

Feasibility Report For

Northwood Lake Storm Water Improvements

Prepared for:

City of New Hope, Minnesota City Project No. 938

November 2014 Stantec Project No. 193802816

Stantec Consulting Services Inc. 2335 Highway 36 West St. Paul, MN 55113 651.636.4600

November 12, 2014

Mr. Bob Paschke Director of Public Works City of New Hope 5500 International Parkway New Hope, MN 55428

Re: Northwood Lake Storm Water Improvements – Final Feasibility Report City Project No. 938 Stantec Project No. 193802816

Dear Mr. Paschke:

We are pleased to present our Final Feasibility Report for the Northwood Lake Storm Water Improvements project. The general location of the work includes the improvement area at the north east part of Northwood Lake, west of Boone Avenue, as well as an improvement area to the west of the lake adjacent to Jordan Avenue.

The improvements included in this report are identified in the Bassett Creek Watershed Management Commission's Capital Improvement Program (BCWMC's CIP), which is scheduled to begin construction in 2016.

We recommend this report be presented and discussed at the November 10, 2014, City Council meeting. Following City Council review, the report can be presented and discussed at the November 19, 2014, BCWMC meeting.

Respectfully submitted,

STANTEC CONSULTING SERVICES INC.

Christoph W. Long

Christopher W. Long, P.E

I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota.

Christopher W. Long

Christopher W. Long, P.E. Date: November 12, 2014

Reg. No. 47106

Table of Contents

Letter of Transmittal

Table of Contents	i
Introduction	1
History	
Scope of Study	
Figure 1 – Location Map (Concept Improvement Areas)	2
Existing Conditions	
Preliminary Survey/Site Field Investigation	
Soil Boring & Sampling Results	
Figure 2 – Soil Boring Locations	
Storm Water Improvement Concepts	6
Stakeholder Feedback	6
Concept A Improvements	7
Concept B Improvements	8
Concept C Improvements	8
Figure 3 – Concept A Improvements	9
Figure 4 – Concept B Improvements	10
Figure 5 – Concept C Improvements	11
Figure 6 – Concept A Improvement Details	12
Figure 7 – Concept A Improvements Details (Water Reuse & Irrigation Area)	13
Figure 8 – Concept B Improvement Details	14
Figure 9 – Concept C Improvement Details	15
New and/or Innovative Approaches or Technologies	16
Permit Requirements	16
Storm Water Analysis	17
Concept A	
Concept B	17
Concept C	17
Figure 10 – Concept A Drainage Areas	18
Figure 11 – Concept B Drainage Areas	19
Figure 12 – Concept C Drainage Areas	
Runoff Reduction	
Table 1 – Runoff Volume Reduction Table	21
Phosphorous Reduction	
Table 2 – Total Phosphorus Reduction Table	21
Cost Estimates	22
Table 3 – Total Project Costs	22
Estimated Life Span for Concepts	22
Concept A	22
Concept B	
Concept C	23

Table 4 – 30-Year Life Maintenance Costs	24
Table 5 – 30-Year Life Cycle Costs & Phosphorous Removal	
Financing	
Revenues	
Table 6 – Potential Funding Source	
Project Schedule	
Concept Analysis	
BCWMC Objectives	
Table 7 – BCWMC Objectives	
Pros and Cons	
Table 8 – Pros and Cons	
Intangible Benefits – Concept A	
Conclusion and Recommendations	

Appendix

Appendix A – Preliminary Cost Estimate

Appendix A-1	Summary
Appendix A-2	Concept A, Part I- Storm Sewer Redirection
Appendix A-3	Concept A, Part II – Underground Storage Tank
Appendix A-4	Concept A, Part III - Water Re-use Piping & Pump House
Appendix A-5	Concept A, Part IV – Rain Gardens
Appendix A-6	Concept A, Part V – Loop Trail
Appendix A-7	Concept B, Part I – Pond
Appendix A-8	Concept B, Part II – Loop Trail
Appendix A-9	Concept C, Part I – Pond

Appendix B – Soil Boring Report

Appendix C – MID's Calculations

MID's Calculation Memo Concept A – Calculation Results Concept B – Calculation Results Concept C – Calculation Results Northwood Pond Net Model

Appendix D – Northwood Lake Information

Appendix E – Local Water Management Plan Excerpts

Introduction

The City of New Hope has chosen to investigate the feasibility of performing storm water improvements at Northwood Lake. The project areas identified at Northwood Lake are shown on Figure 1.

HISTORY

In 1996 Barr Engineering prepared the Northwood Lake Watershed and Lake Management Plan which identified several Best Management Practices (BMP's) to help improve water quality. The plan identified the Northeast Drainage District, which is the current area of proposed improvements, as an area to implement BMP's, and reduce phosphorous loading. In efforts to enhance the water quality of the lake and downstream water bodies, cost effective BMP's were recommended to be implemented to prevent degradation of the lake's water quality and mitigate any effects urbanization has on the lake.

Northwood Lake is an identified DNR Public Water and is also on the State Impaired Waters List for excess nutrients. A Total Maximum Daily Load (TMDL) study has not been completed, but is anticipated in the future.

The City of New Hope has completed several storm water improvement projects at Northwood Lake over the past 40 years (see Appendix D). As identified in the City's Local Water Management Plan, past and future water quality projects are further identified (see LWMP excerpts in Appendix E).

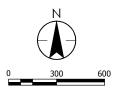
The Bassett Creek Watershed Management Commission (BCWMC) has identified a project to complete storm water improvements at Northwood Lake in their Capital Improvements Program (CIP) for funding in 2016 and 2017. According to the BCWMC CIP process and timeline, a feasibility report must be completed in order for funding to be provided.

SCOPE OF STUDY

The purpose of this report is to provide the feasibility to construct storm water improvements at Northwood Lake. The type of improvements, storm water benefits, cost of the improvements, and how the improvements will be funded will be evaluated.

As funding may be provided from the BCWMC, the report will follow the Feasibility Study Criteria, as approved by the BCWMC on October 17, 2013. The feasibility of three alternative concept options for storm water improvements will be reviewed.

Proposed storm water improvements will be coordinated with future park improvements at Northwood Lake. The City currently has identified park and playground improvements in their CIP for 2016. This report generally identifies future park improvements along with the storm water improvement options to ensure all improvements are harmonious with future City visions.


This Page Left Blank Intentionally

LOCATION MAP

CITY OF NEW HOPE, MINNESOTA 2016 NORTHWOOD LAKE IMPROVEMENTS Northwood Park Site
 * Concept A
 * Concept B

Concept A Irrigation Area
 * 2 Baseball Fields
 * 1 Soccer Field

Existing Conditions

PRELIMINARY SURVEY/SITE FIELD INVESTIGATION

A preliminary survey and field investigation was completed in order to understand the existing site conditions, elevations, and the conditions of the existing storm water infrastructure. Two areas (see Figure 2 – Soil Boring Locations) adjacent to Northwood Lake were surveyed and investigated, and described below are the observations:

- 1. Jordan Avenue Area City owned lot located west of Jordan Avenue, and east of TH-169.
 - a. Existing site is at a raised elevation, and will require additional common excavation to construct a potential pond or storm water feature.
 - b. Existing storm sewer to the south of the site on Jordan Avenue and Northwood Parkway will require improvements and further investigation in the future. All of the structures are failing and the records for the exact location of the storm pipe are unknown at the outlet to the south west side of the lake.
 - c. The street of Jordan Avenue is in poor condition, and future improvements should be coordinated with any storm water improvements.

City Lot West of Jordan Avenue (looking northwest)

- 2. Northeast Northwood Lake Park Area the park area located west of Boone Avenue, south of Ensign Avenue
 - a. The 36-inch diameter storm sewer which outlets into the lake from Ensign Avenue and Hopewood Lane is at approximately the same elevation of the lake. In order to construct any potential dry cell storm water features such as rain gardens, the storm sewer will require upstream redirection to raise the storm sewer elevation.
 - b. The primary open space at the park near the lake is at a low and similar lake level elevation, which was in a visible wet condition. According to City staff, the open space it typically unusable recreational space due to the wet conditions.
 - c. Some of the existing storm sewer at the intersection of Hopewood Lane and Ensign Avenue will require improvements in the future, as a few structures are failing.

Northwood Park (looking southeast from Ensign Ave)

Wet Open Space (looking southeast)

SOIL BORING & SAMPLING RESULTS

A total of 10 geo-probe soil borings were performed at the location identified on Figure 2. Borings were performed in order to understand the type of soils and if infiltration or filtration BMP's could be utilized onsite. Ground water levels were also measured. Environmental testing was completed on the Jordan Avenue site, as City staff had identified this as a site where Northwood Lake dredging materials were placed in 1979 and 1980.

The soil borings generally revealed clay and slow draining soils. The sampled soils at the Jordan Avenue site meet the criteria of residential reuse soils for the analyzed compounds Copper, Arsenic, and PAH's. The detailed soil exploration report is located in Appendix B.

SOIL BORING LOCATIONS

CITY OF NEW HOPE, MINNESOTA 2016 NORTHWOOD LAKE IMPROVEMENTS

Storm Water Improvement Concepts

As required by the BCWMC, multiple alternative concept options need to be reviewed in order to judge the merits of each alternative. The three concepts identified by the City of New Hope are described below. General sketches of these improvement concepts are shown on Figures 3, 4, and 5 on the following pages. More detailed information (i.e. infrastructure improvements, preliminary design information, etc.) is shown on Figures 6 through 9 on the following pages.

STAKEHOLDER FEEDBACK

In efforts to obtain resident and stakeholder feedback, two separate neighborhood meetings were held on June 24 and August 13 of 2014. At the first meeting we discussed initial concepts and the potential project background. The second meeting further discussed the potential storm water improvements with updated concepts based on previous feedback.

On August 18, 2014, the updated concepts were shown to the City Council. We discussed the feedback from the previous neighborhood meetings and provided a project update to the City Council.

In general, the residents and City Council were in favor of Concept A and Concept C. They were not in favor of constructing a pond for storm water improvements in the Concept A area, as they desire to maximize the limited and available open park space for recreational use. Previous storm water improvements around the lake include pre-treatment ponds, but have proven difficult to maintain and lack aesthetic value. Below summarizes additional feedback:

- In favor of completing storm water improvements to help improve the water quality of Northwood Lake and downstream waters
- Provide low maintenance improvements: easy access to structures and rain gardens; low maintenance plantings
- Minimize impact to park space
- Be cognizant of adjacent residents and improvement placement
- In favor of irrigation and water reuse concept
 - o City water cost savings
 - o Underground storm water tank has no impact to park space
- Improve and review the storm water quantity impacts of the improvements, as upstream flooding occurs

Based upon the feedback received from the different stakeholders, we updated the following three concept improvements provided in this report.

CONCEPT A IMPROVEMENTS

A general overview of the Concept A storm water improvements is shown on Figure 3, with the details of these improvements shown in Figure 6 and 7. The Concept A improvements include the redirection of storm sewer on Boone Avenue, installation of a storm water treatment structure, underground storage tank and water reuse for ball field irrigation, rain gardens, sump structure, curb cut, and emergency overflows. Preliminary design details for Concept A include:

- Approximately 84-percent of the drainage area flow from north of this site is redirected through new 36-inch storm sewer along the west side of Boone Avenue, between Hopewood Lane and Ensign Avenue.
 - Since the existing storm sewer at Hopewood Lane and Ensign Avenue is near the same elevation of the lake, it is required to redirect the storm sewer to achieve a higher elevation in order to utilize the underground storage tank and rain garden features.
- The new 36-inch storm sewer is routed through a storm water treatment structure which will capture course sediment as a means of pre-treatment of runoff prior to discharging to the underground storm water storage system.
- The underground storm water storage system is located in the northeast corner of Northwood Park and is proposed as a 160,000 gallon concrete vault to capture existing runoff from an 89 acre residential drainage area.
- Storm water in the storage system will be re-used and pumped through a pipe to the irrigation box location on the east side of Boone Avenue, and reused to irrigate 6.4 acres of baseball and soccer fields. During larger rain events and runoff volumes exceeding the re-use chamber capacity, storm water will overflow into a series of linear biofiltration basins along Ensign Avenue, receiving storm water filtration treatment prior to discharging to Northwood Lake. The improvements also identify a curb cut along Ensign Avenue to direct street drainage into the rain gardens.
- A sump structure would be installed at the location of the existing storm sewer to collect sediment prior to entering the lake.
- Estimated Storage Volume in Bioretention Features = 16,000 ft³

This series of BMP's provides an innovative approach to storm water treatment combining storm water re-use, filtration, and pollutant uptake through vegetation.

Depending on the type of season and rainfall, the storm water re-use system will save the City approximately \$5,000 to \$10,000 per year in water costs, and will provide storage for approximately one to two weeks of irrigation during dry periods.

In regards to the biofiltration basins, as stated in the Soil Exploration Report in Appendix B, ground water was not identified or found in Borings 8-10. We anticipate ground water levels to be between elevations 885 and 891.5. During the design and potentially additional field investigation, biofiltration basin elevations and ground water elevations will be further evaluated. As augmented soils within biofiltration basins do not typically function well (when saturated, a quicksand type situation can occur), we plan on designing the bottom of the basins to be above the ground water level and/or separated with a clay layer of soil.

We understand there may be concern about the potential for lowering Northwood Lake water levels due to the runoff volume removed by the storm water reuse system. The drainage area routed to the storm water reuse system is less than 7% of the total Northwood Lake drainage area. In addition, once the reuse system tank is filled, the remaining runoff volume will be entirely diverted to Northwood Lake. Therefore, we believe that the proposed storm water reuse system will have a minimal impact on Northwood Lake water levels. Additional review utilizing the BCWMC's storm water models will occur during final design.

As there may be potential public health concerns related to storm water reuse, potential mitigation measures will be considered during the design phase. Discussions need to occur in regards to ultraviolet (UV) disinfection, irrigation schedule compared to that of the ball field users, and signs notifying the public of water reuse for irrigation. The final design will need to be reviewed with the City Public Works and Building Official for code compliance.

CONCEPT B IMPROVEMENTS

The Concept B Improvements are shown generally on Figure 4, with the details of this concept on Figure 8. The Concept B Improvements include redirecting flow in the existing 36-inch trunk storm sewer running along the west side of Northwood Park into a constructed wet ponding basin. Storm water runoff will be treated in the wet ponding basin, and ultimately discharge back into Northwood Lake.

- Pond Surface Area = 0.34 acre
- Pond Dead Storage Volume = 1.2 acre-feet

The existing trail will require relocation due to the new storm water pond. The pond was not shown further to the east, or larger in size, in efforts to minimize the park impact and preserve the open park space to the west of the existing playground. The final design location of the pond, if constructed, should be discussed and reviewed with the City and adjacent property owners.

As soil borings verified (see Appendix B), the ground water levels in the proposed pond location will not allow for a dry rain garden type improvement scenario. Any excavation improvements in the lower areas adjacent to the lake will likely supply wet conditions.

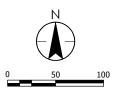
CONCEPT C IMPROVEMENTS

The Concept C Improvements are shown generally on Figure 5, with the details of this concept on Figure 9. The Concept C Improvements include the construction of a wet ponding basin in a green space area between Trunk Highway 169 and Jordan Avenue. Storm water runoff from both rear yard areas and Jordan Avenue draining from the south would be directed into a wet ponding basin for treatment, before discharging into an existing storm sewer pipe tributary to Northwood Lake.

- Pond Surface Area = 0.23 acre
- Pond Dead Storage Volume = 0.7 acre-feet

This Page Left Blank Intentionally

NORTHWOOD PARK - CONCEPT A


CITY OF NEW HOPE, MINNESOTA 2016 NORTHWOOD LAKE IMPROVEMENTS

Proposed Redirected Storm Sewer (Drainage Area = 89.2 Acres) Proposed Storm Treatment Structure Proposed Underground Stormwater Storage for Ball Field Irrigation

Pump House

(Water Reuse)

NORTHWOOD PARK - CONCEPT B

Existing Storm Sewer

Future Trail Lighting, Typ.

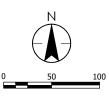
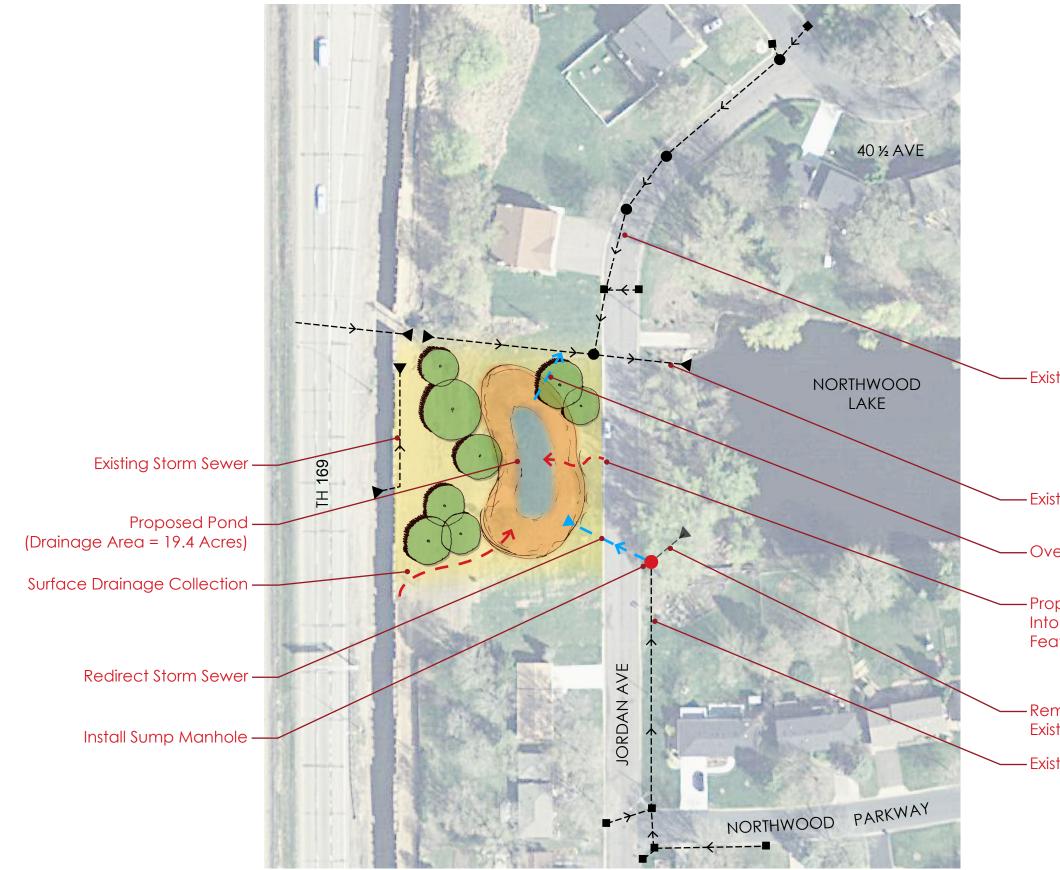



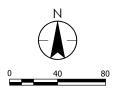
FIGURE 4

JORDAN AVENUE - CONCEPT C

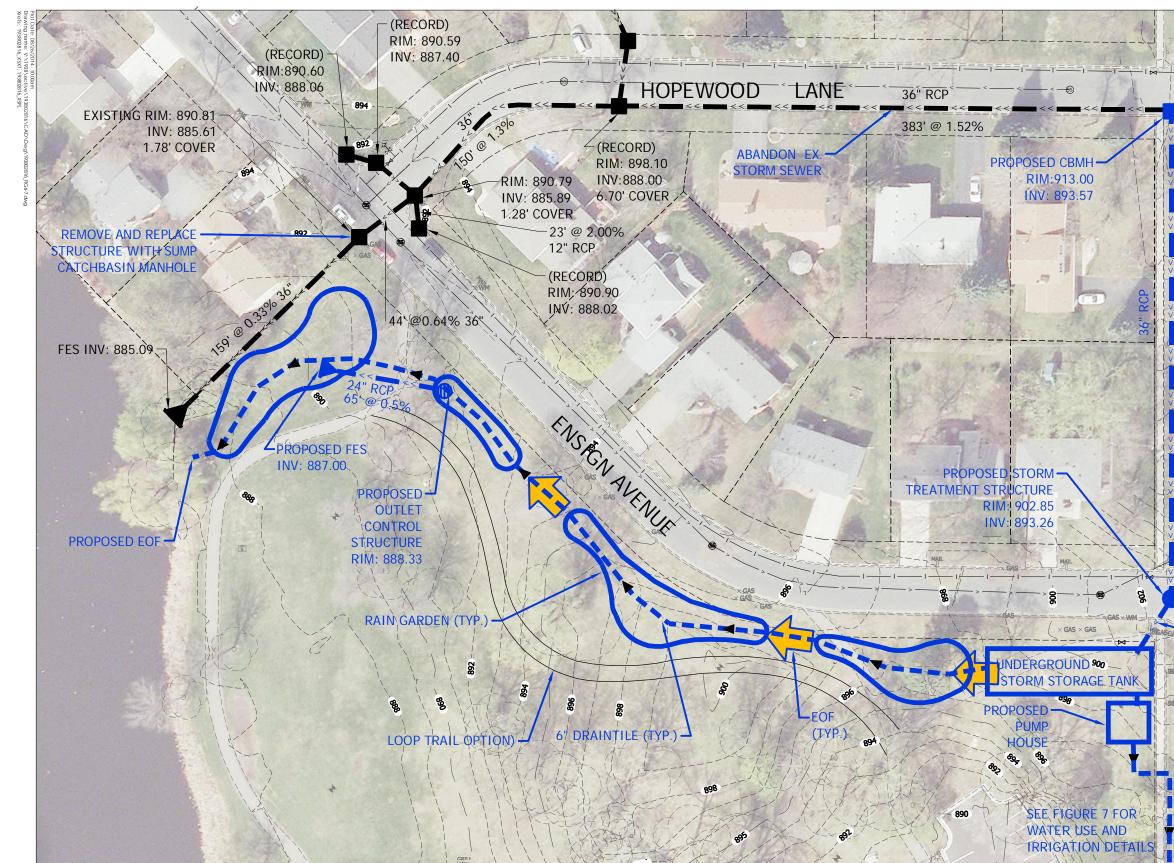
CITY OF NEW HOPE, MINNESOTA 2016 NORTHWOOD LAKE IMPROVEMENTS

FIGURE 5

-Existing Storm Sewer

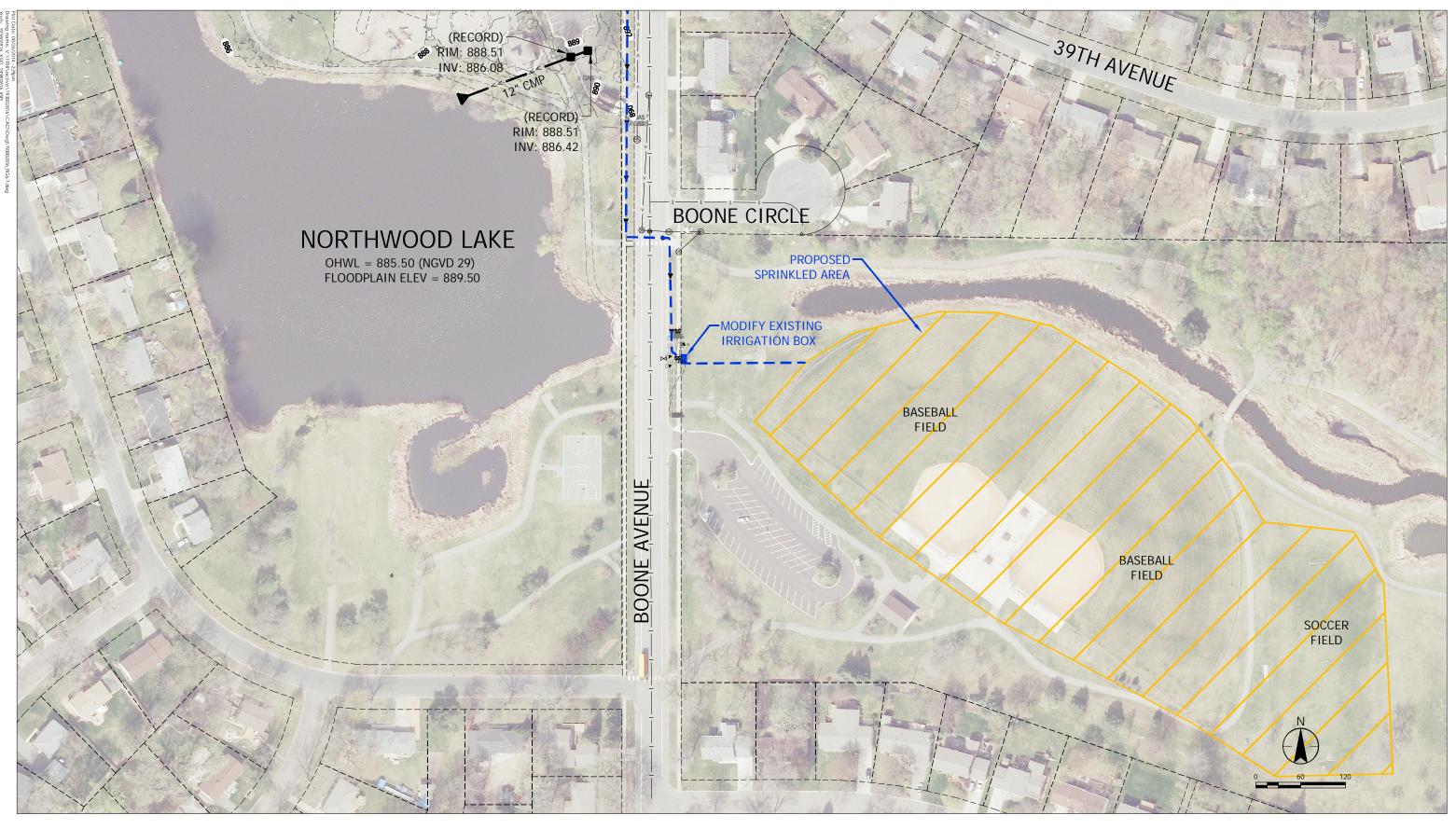

-Existing Storm Sewer

-Overflow Outlet


- Proposed Curb Cut Into Stormwater Feature

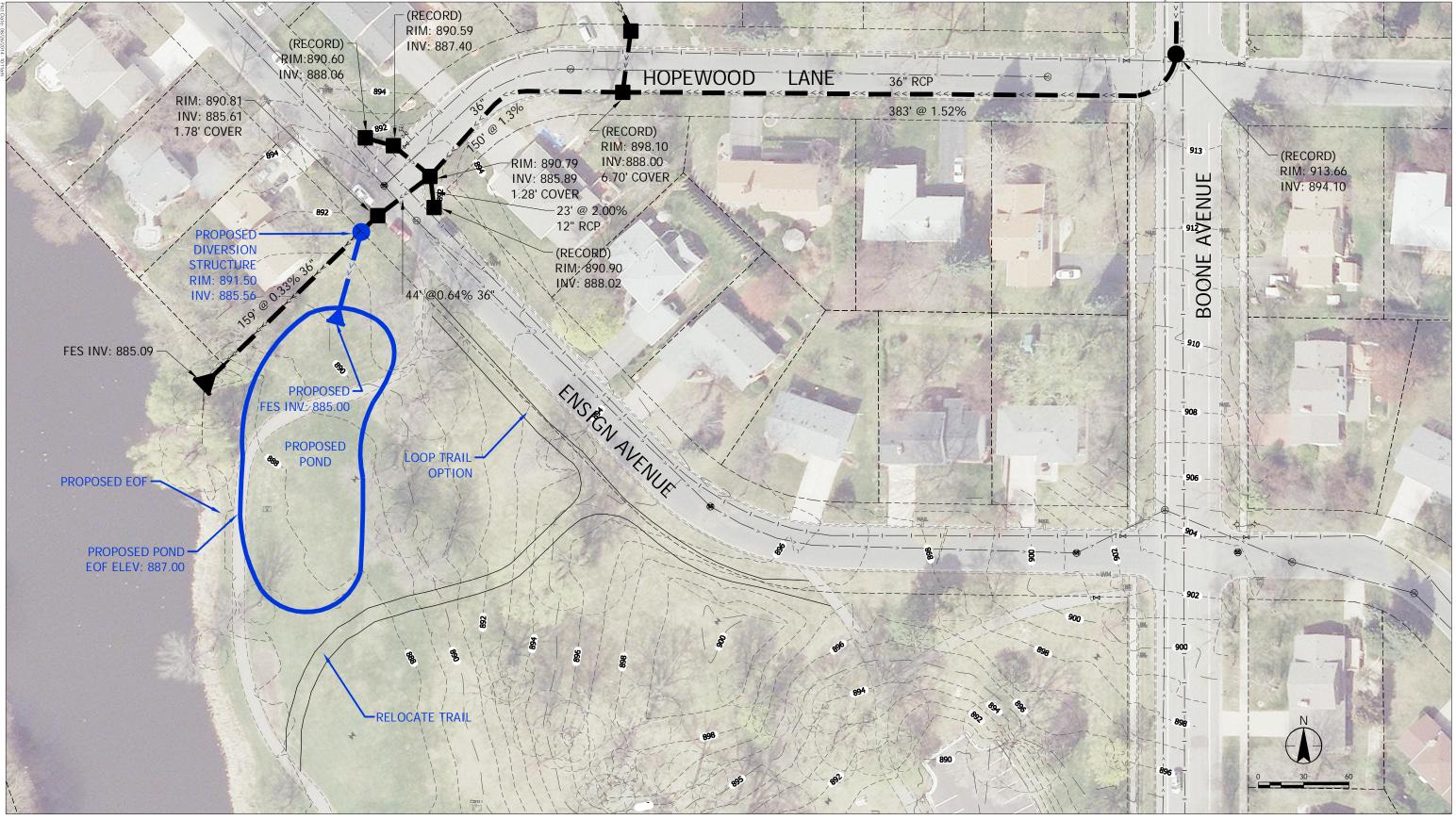
-Remove/Abandon Existing Storm Sewer

Existing Storm Sewer


CONCEPT A IMPROVEMENT DETAILS

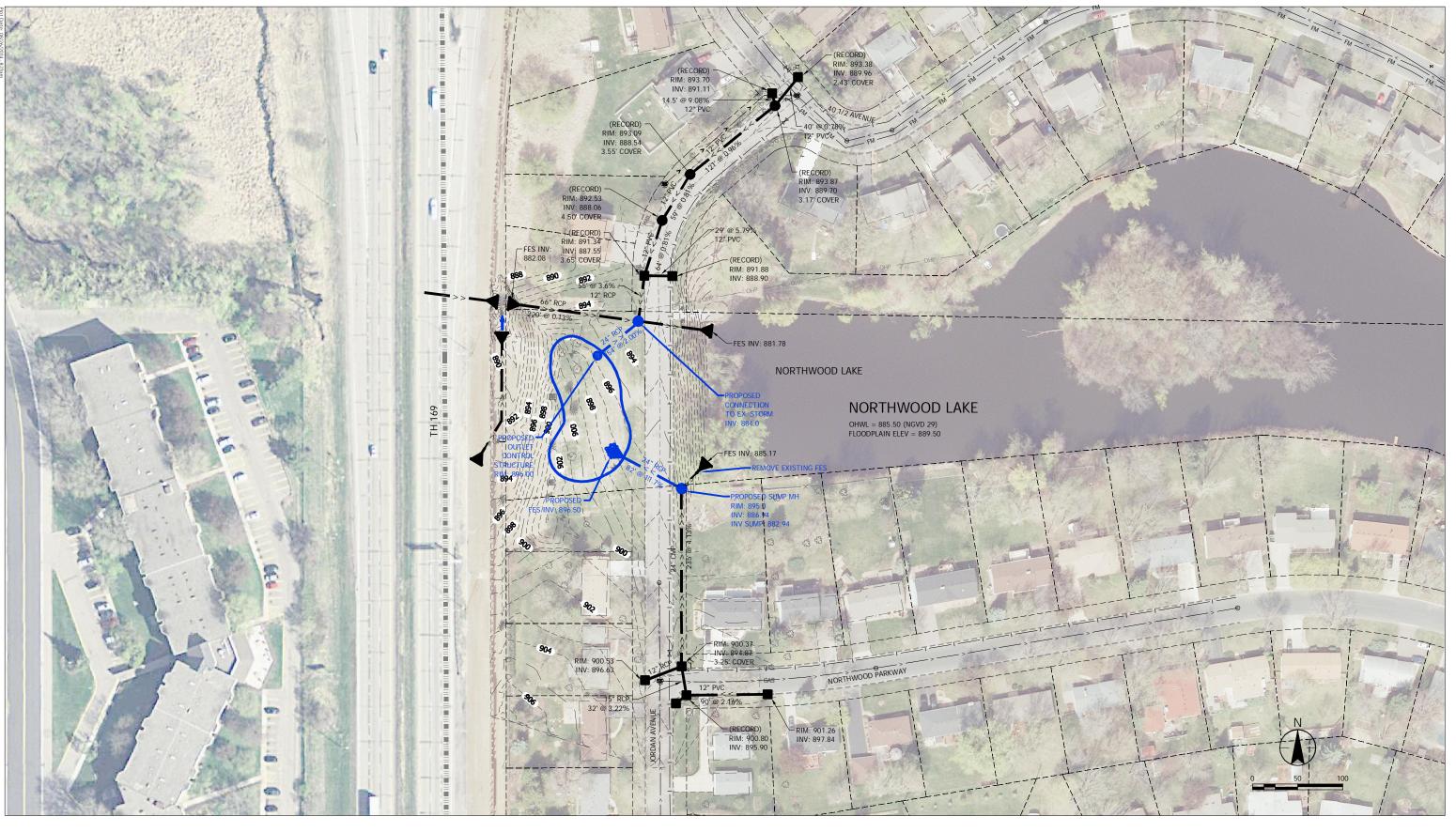
CITY OF NEW HOPE, MINNESOTA 2016 NORTHWOOD LAKE IMPROVEMENTS

FIGURE 6



CONCEPT A IMPROVEMENT DETAILS

CITY OF NEW HOPE, MINNESOTA 2016 NORTHWOOD LAKE IMPROVEMENTS



CONCEPT B IMPROVEMENT DETAILS

CITY OF NEW HOPE, MINNESOTA 2016 NORTHWOOD LAKE IMPROVEMENTS

FIGURE 8

CONCEPT C IMPROVEMENT DETAILS

CITY OF NEW HOPE, MINNESOTA 2016 NORTHWOOD LAKE IMPROVEMENTS

NEW AND/OR INNOVATIVE APPROACHES OR TECHNOLOGIES

Concept A proposes a combination of innovative storm water treatment Best Management Practices (BMPs); including a storm water re-use system with an overflow diversion to a series of biofiltration basins. Storm water re-use system is a new storm water treatment approach in Minnesota, and would be the first re-use system installed in New Hope. In addition, combining a reuse system with an overflow diversion to a series of biofiltration basins is considered an innovative treatment approach as provides a 2-stage treatment process to maximize the level of water quality treatment provided to the storm water system.

Concepts B and C utilize a traditional water quality treatment approach with wet storm water quality ponding.

PERMIT REQUIREMENTS

The proposed reuse feature in Concept A requires a Minnesota Department of Natural Resources' (MDNR) Water Appropriations Permit. All Concepts will include a BCWMC Review. Only Concept A will disturb more than 1 acre, and will require an NPDES Construction Storm Water Permit." The City will require a permit for grading.

Storm Water Analysis

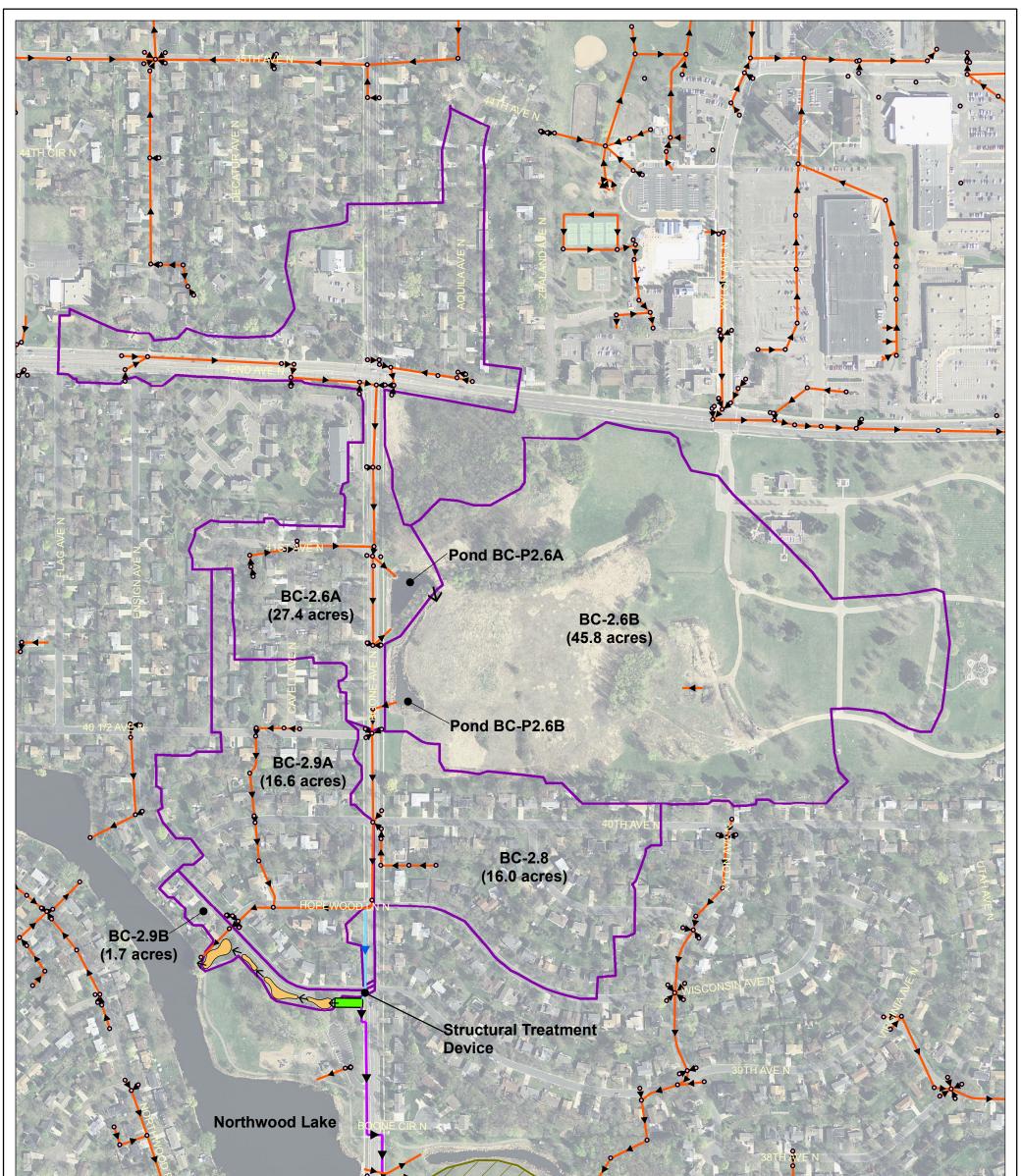
To estimate and compare the water quality treatment performance of the three improvement concepts, we used the Minimal Impact Design Standards (MIDS) Calculator (Version 2: June 2014). This user-friendly calculator tool provides a consistent basis for comparison for a variety of water quality BMPs, including those proposed in Concepts A, B, and C.

A brief discussion of our analysis approach to each concept is provided below. In addition, a technical memo in Appendix C provides more detailed background regarding the inputs, assumptions, and results of the water quality treatment calculations.

CONCEPT A

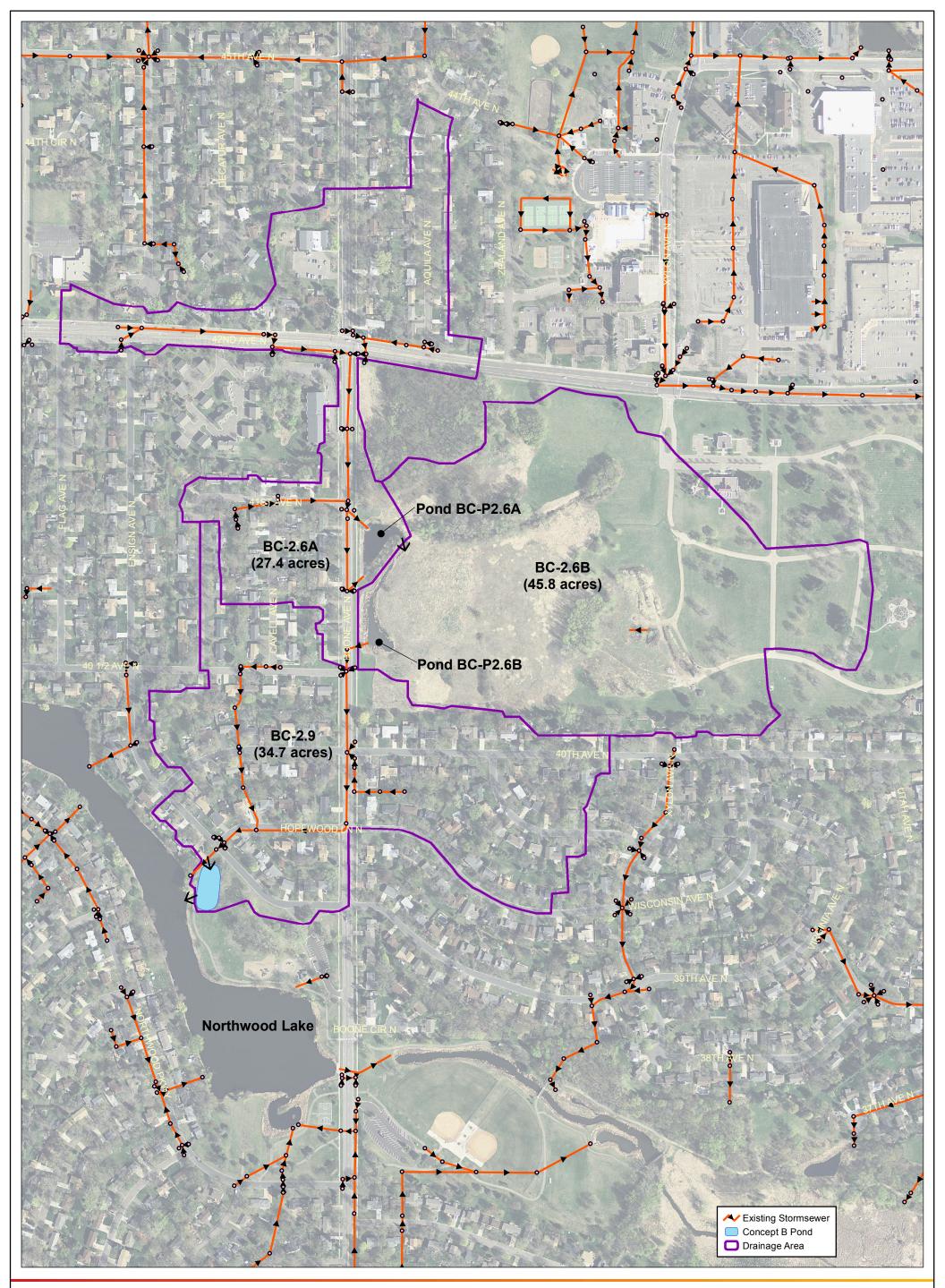
The drainage areas for our analysis of Concept A are shown on the Concept A Drainage Area Map (Figure 10). Our approach to analyzing the water quality treatment benefit of Concept A includes a combination of two modeling tools, PondNET and the MIDS Calculator. We first used PondNET, a spreadsheet based water quality pond efficiency calculator, to estimate the performance of the two existing water quality pond adjacent to Boone Avenue, Ponds BC-P2.6A and BC-P2.6B. A copy of the PondNET spreadsheet is attached to the technical memo in Appendix C.

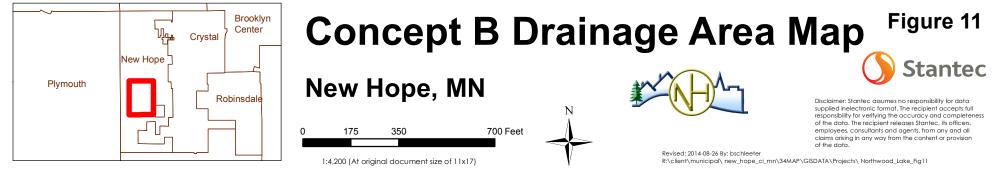
We transferred the pond TP and TSS removal efficiencies from PondNET directly into the MIDS Calculator as "Other" type BMPs, which are connected to a storm water reuse system BMP. Drainage area BC-2.8 is routed to the storm water reuse system. The reuse system BMP is routed to a series of biofiltration features adjacent to Ensign Avenue. Drainage area BC-2.9B is routed to the biofiltration features. Drainage area BC-2.9A bypasses the improvement BMPs and is routed directly to Northwood Lake. A summary of the MIDS Calculator for Concept A is attached to the technical memo in Appendix C.

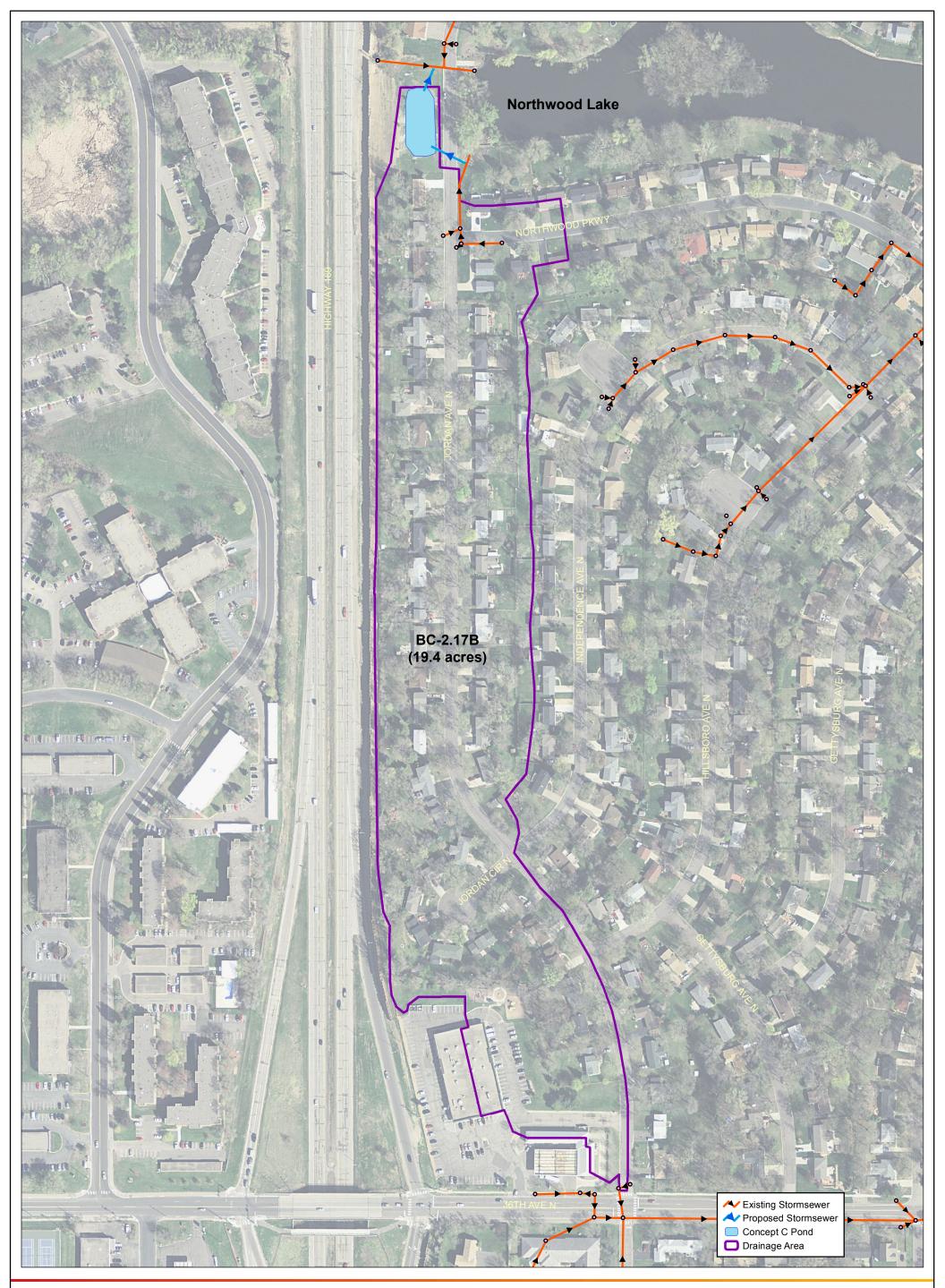

CONCEPT B

Concept B drainage areas are shown on the Concept B Drainage Area Map (Figure 11). As with Concept A, the treatment efficiencies of Ponds BC-P2.6A and BC-P2.6B from PondNET were added to the MIDS Calculator as "Other" type BMPs, which then discharge to the Concept B water quality pond. Drainage area BC-2.9 is routed directly to the Concept B water quality pond. A summary of the MIDS Calculator for Concept B is attached to the technical memo in Appendix C.

CONCEPT C


The drainage areas for Concept C are shown on the Concept C Drainage Area Map (Figure 12). Drainage area BC-2.17B is routed directly to the Concept C water quality pond. A summary of the MIDS Calculator for Concept C is attached to the technical memo in Appendix C.





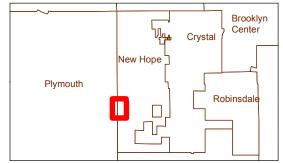


Figure 12 **Concept C Drainage Area Map Stantec** New Hope, MN

Disclaimer: Stantec assumes no responsibility for data supplied inelectronic format. The recipient accept full responsibility for verifying the accuracy and completen of the data. The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data.

RUNOFF REDUCTION

Concept	Total Drainage Area in System	Total Annual Runoff Volume	Proposed Total Annual Runoff Volume Removed	Proposed Percent Annual Runoff Volume Removed
	(acres)	(acre-feet)	(acre-feet)	(%)
Concept A	90.8	74.3	10.2	14%
Concept B	107.4	93.7	0.0	0%
Concept C	19.4	20.4	0.0	0%

 TABLE 1 – RUNOFF VOLUME REDUCTION TABLE

PHOSPHOROUS REDUCTION

 TABLE 2 – TOTAL PHOSPHORUS REDUCTION TABLE

Concept	Total Drainage Total Annual Concept Area in System Phosphorus Load		C		Proposed Total Annual Phosphorus Removed	Proposed Percent Annual Phosphorus Removed
	(acres)	(pounds)	(pounds)	(%)		
Concept A	90.8	60.6	16.3	27%		
Concept B	107.4	76.4	15.4	20%		
Concept C	19.4	16.6	5.7	34%		

Cost Estimates

Cost estimates have been prepared for the three different improvement options, and detailed estimates are shown in Appendix A. As requested by City staff, a loop trail option is identified in Appendix A for Concept A and B, but is not associated to the storm water improvements and is only shown as potential future City costs. Summaries of the estimated storm water related costs are shown in Table 3 below. Estimated indirect costs include engineering, legal, fiscal, and contract administration.

	generee and ze
Concept	Total Project Cost
А	\$1,200,872
В	\$134,264
С	\$150,456

TABLE 3 – TOTAL PROJECT COSTS (Includes estimated 10% Contingencies and 25% Indirect Cost)

ESTIMATED LIFE SPAN FOR CONCEPTS

The life span for each of the concepts was estimated below, with the 30 year life cost calculations assuming a 5% interest rate. All costs assume total project costs including indirect. Annual maintenance costs are shown in Table 4.

CONCEPT A

- Rain gardens 20 Year Life
 - o Assuming replacement of augmented soils, plantings, and mulch
 - o Estimated Present Cost ~ \$115,000
 - o 30 Year Life Future Cost ~ \$305,129
- Underground Stormwater Storage and Storm Piping 80 Year Life
 - o Assume concrete repairs every 15 years
 - o Estimated Present Cost ~ \$10,000
 - o 30 Year Life Future Cost ~ \$64,009
- Pump House, Pumps, Controls 30 Year Life
 - o Assume full replacement of pumps, controls, and valves
 - o Estimated Present Cost ~ \$120,000
 - o 30 Year Life Future Cost ~ \$518,633
- Pump House 30 Year Life
 - o Assume pump house maintenance
 - o Estimated Present Cost ~ \$25,000

- o 30 Year Life Future Cost ~ \$108,049
- Operation and Maintenance Annual
 - Assume general operation and maintenance of all the facilities and rain gardens, including energy use
 - o Estimated Present Cost ~ \$3,000
 - o 30 Year Life Future Cost ~ \$199,317
- Irrigation Savings Annual
 - o Assumes water savings for irrigation of the two baseball fields and one soccer field
 - o Estimated Present Cost ~ \$10,000
 - o 30 Year Life Future Cost ~ \$664,388

CONCEPT B

- Pond 30 Year Life
 - o Assume dredging required
 - o Estimated Present Cost ~ \$70,000
 - o 30 Year Life Cost ~ \$302,536
- Maintenance Annual
 - o Assume sediment cleanout vegetative maintenance at inlets, outlets, and sumps
 - o Estimated Present Cost ~ \$2,000
 - o 30 Year Life Cost ~ \$132,878

CONCEPT C

- Pond 30 Year Life
 - o Assume dredging required
 - o Estimated Present Cost ~ 50,000
 - o 30 Year Life Cost ~ \$216,097
- Maintenance Annual
 - o Assume sediment cleanout vegetative maintenance at inlets, outlets, and sumps
 - o Estimated Present Cost ~ \$2,000
 - o 30 Year Life Cost ~ \$132,878

Concept	Maintenance	Present Maintenance Cost	Annual Life Maintenance Cost (using Capital Recovery)	Future Maintenance Cost
Concept A				
Rain Gardens	Replacement every 20 years	\$115,000	\$9,228	\$305,129
Underground Storage and Storm Piping	Concrete repairs every 15 years	\$10,000	\$1,614	\$64,009
Pumps and Controls	Full replacement of pumps, controls, valves every 30 years	\$120,000	\$7,806	\$518,633
Pump House	Pump house maintenance every 30 years	\$25,000	\$1,626	\$108,049
Operation and Maintenance	Annual general operation and maintenance of all the facilities and rain gardens	\$3,000	\$3,000	\$199,317
Irrigation Savings	Annual water savings for irrigation	-\$10,000	-\$10,000	-\$664,388
		Total	\$13,274	\$530,748

TABLE 4 – 30-YEAR LIFE MAINTENANCE COSTS

Concept B				
Pond	\$7	0,000	\$4,554	\$302,536
Maintenance	\$	2,000	\$2,000	\$132,878
		Total	\$6,554	\$435,414

Concept C			
Pond	\$50,00	\$3,253	\$216,097
Maintenance	\$2,00	\$2,000	\$132,878
	Tot	al \$5,253	\$348,975

Concept	Total Initial Project Cost (\$)	Aı	A ₂	Total A	Annual Phosphorous Reduction (Ib)	Annual Cost per Phosphorous Removal Over 30 Years (\$/Ib)
Concept A	\$1,200,872	\$78,118	\$13,274	\$91,393	16.3	\$5,607
Concept B	\$134,264	\$8,734	\$6,554	\$15,288	15.4	\$993
Concept C	\$150,456	\$9,787	\$5,253	\$15,040	5.7	\$2,639

TABLE 5 - 30-YEAR LIFE CYCLE COSTS & PHOSPHOROUS REMOVAL

A1 Annual Disbursement of Initial Project Cost in uniform series for 30 year period, at an interest rate of 5%

A2 Annual Disbursement of Maintenance Cost in uniform series for 30 year period, at an interest rate of 5%

Financing

REVENUES

The following are possible sources of funding for the Northwood Lake Storm Water Improvements project:

- Bassett Creek Watershed Management Commission
- Grants
 - o Minnesota Board of Soil and Water Resources Clean Water Grant
 - o Hennepin County Natural Resources Grant
 - o Others
- City Storm Water Fund

Concept	BCWMC	Grants	City Storm Water Fund	Total Project Cost
Concept A	\$595,000	\$400,000	\$205,872	\$1,200,872
Concept B	\$134,264			\$134,264
Concept C	\$150,456			\$150,456

TABLE 6 – POTENTIAL FUNDING SOURCE

Project Schedule

The general schedule for the project is outlined below:

BCWMC – Review Draft Feasibility Study	September 18, 2014
City of New Hope – Approve Final Feasibility Study	November 10, 2014
BCWMC – Approve Final Feasibility Study	November 19, 2014
Design Improvements	January 2015 – January 2016
Bid Opening/Award Contract	February 2016
Construct Improvements	May – Sept., 2016

Concept Analysis

BCWMC OBJECTIVES

The following BCWMC objectives were met for each of the improvement alternatives:

	Flood Control	Water Quality	Aesthetics	Habitat	Recreation	Education
Concept A	х	х	х	х	х	х
Concept B		х	х	х	х	
Concept C		х	х	Х		

TABLE 7 – BCWMC OBJECTIVES

PROS AND CONS

A statement of pros and cons for each concept is provided below.

	Concept A	Concept B	Concept C					
Pros	Volume control benefits	Effective TP and TSS removal	Effective TP and TSS removal					
	Adds aesthetic value in Northwood Park	Minimal regular maintenance	Minimal regular maintenance					
	Can be maintained regularly by City staff	Treats entire drainage area tributary to Northwood Lake	Treats entire drainage area tributary to Northwood Lake					
	Removes soluble phosphorous							
	Water Conservation							
Cons	Capital cost	No volume control benefit	No volume control benefit					
	Limited reuse tank capacity	Lack of public support	Limited drainage area					
	Drainage area BC-2.9A cannot be routed into the Concept A BMPs	Limited aesthetic benefit in Northwood Park	Limited space for pond grading					

INTANGIBLE BENEFITS – CONCEPT A

The Concept A improvements offer other intangible benefits which cannot be measured by only a cost per phosphorous removal analysis. The City and BCWMC both place high priority on projects with multiple benefits, and Concept A supports multiple benefits with an innovative approach.

A primary concern for the residents, City staff, and City Council was the preservation of the open park space. Concept A minimizes the impact on open park space by utilizing the underground storage tank, as well as providing a linear and aesthetically appealing series of rain garden filtration features. No storm water feature is proposed in the open space near the existing playground adjacent to the lake, as this area may be utilized for future park improvements or be maintained as

usable open park space. Although open park space may appear ideal or inexpensive for installing storm water treatment features, the space is highly valuable to the City and minimizing impact is essential.

Another main benefit for Concept A is the savings incurred on water consumption and costs associated to irrigating the ball fields. The reuse system will supply the publicly owned ball fields with irrigation for approximately a two week dry period. New Hope is a part of the Joint Water Commission and obtains their water supply from Minneapolis (Mississippi River) which has high water rates. Water will be conserved and costs will be saved with the reuse system.

As shown on the previous page in the Pros and Cons table (Table 8), the table references the ease of maintenance with Concept A for City staff. Past best management practice projects adjacent to Northwood Lake and around the City include storm water ponds. Although the initial construction cost of these ponds may be less expensive than more innovative BMP's, the ponds tend to be higher maintenance for City staff. Some of the pond maintenance requires contracted work rather than being able to utilize internal City staff. Typical ponds require regular weekly maintenance and limit aesthetic value over time, and the Concept B option near the lake is not favorable for the residents of New Hope.

Northwood Park is the premier park in New Hope, and is the highest used park. This park holds events such as Duk Duk Daze which attracts thousands of visitors every year. Many different groups use this park to gather and hold events. This park features many amenities including: two multi-use ball fields, a soccer field, basketball courts, nature areas, picnic areas, playgrounds, trails, and park shelters. As stated on the city's website, Northwood Park is the crown jewel of the city's park system. Concept A improvements preserve the open park space, while still providing storm water treatment and improving Northwood Lake and downstream waters.

Conclusion and Recommendations

It is the finding of this study that the proposed improvements for Concept A and Concept C are necessary, feasible, and cost effective. Pending the approval of funds as described in Table 6 – Potential Funding Source, both Concepts A and C will benefit Northwood Lake and downstream waters and could be completed as separate or combined projects. The priority for the City is completing Concept A; Concept C could be deferred to a future year as budget constraints may require constructing the projects separately and at different times.

Based on the feedback received from the residents, City staff, and the New Hope City Council, minimizing the impact to the already limited open park space is very critical. Improving water quality for Northwood Lake and downstream water is a priority, and any improvements shall consider the park and uses as a whole. Although the cost per phosphorous removal for Concept A and C improvements is high compared to Concept B, we recommend not completing the pond improvement option in Concept B as the impact to the park is not amenable to the City.

The following steps are recommended:

- Adopt this report as the guide for development of the proposed improvements
- Request approval for funding from the BCWMC
- Order the preparation of plans and specifications
- Provide additional public and adjacent resident feedback opportunities during the design phase, as final improvements and impacts need to be transparent
- Review plans and specifications authorize bidding
- Receive bids
- Install the storm water improvements, with construction anticipated to be occur in 2016
- Complete storm water improvements in concurrence with future playground and park improvements

APPENDIX

Appendix A Preliminary Cost Estimate

APPENDIX-A-1 PRELIMINARY COST ESTIMATES - SUMMARY NORTHWOOD LAKE STORM WATER IMPROVEMENTS PROJECT SEPTEMBER 2014

CONCEPT A

ITEMS	PRICE
STORM WATER RELATED IMPROVEMENTS	
I. STORM SEWER REDIRECTION (INCLUDING TREATMENT STRUCTURE)	\$ 178,450.00
II. UNDERGROUND STORAGE TANK, 160,000 GALLON (WATER RE-USE)	\$ 301,500.00
III. WATER RE-USE PIPING; PUMP-HOUSE FOR IRRIGATION	\$ 207,000.00
IV. RAIN GARDENS (INCLUDING DRAINTILE, SUMP MH, PIPE, RIP RAP, EOF'S & TRAIL	\$ 202,585.00
IMPROVEMENTS DUE TO STORM)	
CONSTRUCTION COST SUBTOTAL (STORM WATER RELATED IMPROVEMENTS) =	\$ 889,535.00
CONTINGENCIES (10%) =	\$ 88,953.50
INDIRECT (25%) =	\$ 222,383.75
TOTAL COST (STORM WATER RELATED IMPROVEMENTS)	\$ 1,200,872.25
NON-STORM WATER RELATED IMPROVEMENTS	
V. LOOP TRAIL	\$ 18,950.00
CONSTRUCTION COST SUBTOTAL (NON-STORM WATER RELATED IMPROVEMENTS) =	\$ 18,950.00
CONTINGENCIES (10%) =	\$ 1,895.00
INDIRECT (25%) =	\$ 4,737.50
TOTAL COST (NON-STORM WATER RELATED IMPROVEMENTS) =	\$ 25,582.50

CONCEPT B

ITEMS	PRICE
STORM WATER RELATED IMPROVEMENTS	
I. POND (INCLUDING DIVERSION STRUCTURE, RIP RAP, EOF)	\$ 99,455.00
CONSTRUCTION COST SUBTOTAL (STORM WATER RELATED IMPROVEMENTS) =	\$ 99,455.00
CONTINGENCIES (10%) =	\$ 9,945.50
INDIRECT (25%) =	\$ 24,863.75
TOTAL COST (STORM WATER RELATED IMPROVEMENTS)	\$ 134,264.25
NON-STORM WATER RELATED IMPROVEMENTS	
II. LOOP TRAIL	\$ 21,700.00
CONSTRUCTION COST SUBTOTAL (NON-STORM WATER RELATED IMPROVEMENTS) =	\$ 21,700.00
CONTINGENCIES (10%) =	\$ 2,170.00
INDIRECT (25%) =	\$ 5,425.00
TOTAL COST (NON-STORM WATER RELATED IMPROVEMENTS) =	\$ 29,295.00

CONCEPT C

ITEMS	PRICE
STORM WATER RELATED IMPROVEMENTS	
I. POND (INCLUDING DIVERSION STRUCTURE, CURB CUT, RIP RAP, EOF)	\$ 111,449.00
CONSTRUCTION COST SUBTOTAL (STORM WATER RELATED IMPROVEMENTS) =	\$ 111,449.00
CONTINGENCIES (10%) =	\$ 11,144.90
INDIRECT (25%) =	\$ 27,862.25
TOTAL COST (STORM WATER RELATED IMPROVEMENTS)	\$ 150,456.15

APPENDIX A-2 PRELIMINARY COST ESTIMATES - CONCEPT A, PART I 2016 NORTHWOOD LAKE IMPROVEMENTS PROJECT SEPTEMBER 2014

2 TRAFFIC CONTROL LS 1 \$ 3,500.00 \$ 3,500.00 3 TREE REMOVAL EA 2 \$ 750.00 \$ 1,500.00 GENERAL SUBTOTAL = \$ 12,000.00 STORM SEWER 4 REMOVE EXISTING STORM SEWER PIPE LF 20 \$ 25.00 \$ 500.00 5 36" RCP STORM SEWER PIPE LF 385 \$ 100.00 \$ 38,500.00 6 12" DIAMETER STORM SEWER TREATMENT MANHOLE EA 1 \$ 50,000.00 \$ 50,000.00 STORM SEWER SUBER TREATMENT MANHOLE EA 1 \$ 4,000.00 \$ 4,000.00 STORM SEWER NUMHOLE EA 1 \$ 4,000.00 \$ 4,000.00 STORM SEWER SUBTOTAL = \$ 93,000.00 STEEES STORM SEWER SUBTOTAL = \$ 93,000.00 <td c<="" th=""><th colspan="12">CONCEPT A - PART I</th></td>	<th colspan="12">CONCEPT A - PART I</th>	CONCEPT A - PART I											
GENERAL I MOBILIZATION I.S 1 \$ 7,000.00 \$ 7,000.00 \$ 7,000.00 \$ 3,500.00 \$ 3,500.00 \$ 3,500.00 \$ 3,500.00 \$ 3,500.00 \$ 3,500.00 \$ 3,500.00 \$ 3,500.00 \$ 3,500.00 \$ 3,500.00 \$ 3,500.00 \$ 3,500.00 \$ 3,500.00 \$ 3,500.00 \$ 3,500.00 \$ 3,500.00 \$ 5,0	Storm Sewer Redirection (Including Treament Structure)												
1 MOBILIZATION LS 1 \$ 7,000.00 \$ 7,000.00 2 TRAFFIC CONTROL LS 1 \$ 3,500.00 \$ 3,500.00 3 TREE REMOVAL EA 2 \$ 750.00 \$ 1,500.00 GENERAL SUBTOTAL = \$ 12,000.00 \$ 12,000.00 \$ 12,000.00 \$ 12,000.00 STORM SEWER ILF 20 \$ 25.00 \$ 500.00 \$ 38,500.00 5 36" RCP STORM SEWER PIPE LF 20 \$ 25.00 \$ 50,000.00 6 12' DIAMETER STORM SEWER TREATMENT MANHOLE EA 1 \$ 4,000.00 \$ 4,000.00 7 6' DIAMETER SEWER MANHOLE EA 1 \$ 4,000.00 \$ 4,000.00 STORM SEWER SUBTOTAL = \$ 93,000.00 \$ 38,500.00 \$ 1,700.00 \$ 38,500.00 \$ 38,500.00 \$ 30,000.00 STORM SEWER DIPE LF 340 \$ 5.00 \$ 1,700.00 \$ 30,000.00 STEETS STORM SEWER SUBTOTAL = \$ 93,000.00 \$ 30,000.00 \$ 1,250.00 \$ 1,250.00 \$ 1,250.00 \$ 1,25	NO.	ITEM	UNITS	QTY	ι	JNIT PRICE	T	OTAL PRICE					
2 TRAFFIC CONTROL LS 1 \$ 3,500.00 \$ 3,500.00 3 TREE REMOVAL EA 2 \$ 750.00 \$ 1,500.00 STORM SEWER EA 2 \$ 750.00 \$ 1,500.00 4 REMOVE EXISTING STORM SEWER PIPE LF 20 \$ 25.00 \$ 500.00 5 36 ° RCP STORM SEWER PIPE LF 385 \$ 100.00 \$ 38,500.00 6 12' DIAMETER STORM SEWER TREATMENT MANHOLE EA 1 \$ 50,000.00 \$ 50,000.00 7 6' DIAMETER SEWER MANHOLE EA 1 \$ 4,000.00 \$ 4,000.00 STORM SEWER SUBTOTAL = \$ 93,000.00 8 REMOVE EXISTING CONCRETE CURB LF 340 \$ 5.00 \$ 1,700.00 9 REMOVE EXISTING BITUMINOUS DRIVEWAY PAVEMENT SY 25 \$ 5.00 \$ 1,600.00 10 REMOVE EXISTING BITUMINOUS PAVEMENT <td>GENER</td> <td>AL</td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td>	GENER	AL	•										
3 TREE REMOVAL EA 2 \$ 750.00 \$ 1,500.00 GENERAL SUBTOTAL = \$ 12,000.00 STORM SEWER LF 20 \$ 25.00 \$ 500.00 5 36' RCP STORM SEWER PIPE LF 20 \$ 25.00 \$ 500.00 6 12 DIAMETER STORM SEWER TREATMENT MANHOLE EA 1 \$ 50,000.00 \$ 50,000.00 STORM SEWER MANHOLE EA 1 \$ 4,000.00 \$ 4,000.00 STORM SEWER MANHOLE EA 1 \$ 4,000.00 \$ 4,000.00 STORM SEWER MANHOLE EA 1 \$ 4,000.00 \$ 4,000.00 STORM SEWER MANHOLE EA 1 \$ 4,000.00 \$ 4,000.00 STORM SEWER MANHOLE EA 1 \$ 4,000.00 \$ 4,000.00 STORM SEWER MANHOLE EA 1 5 5 <t< td=""><td>1</td><td>MOBILIZATION</td><td>LS</td><td>1</td><td>\$</td><td>7,000.00</td><td>\$</td><td>7,000.00</td></t<>	1	MOBILIZATION	LS	1	\$	7,000.00	\$	7,000.00					
GENERAL SUBTOTAL = \$ 12,000.00 STORM SEWER IF 20 \$ 25.00 \$ 500.00 5 36° RCP STORM SEWER PIPE LF 285 \$ 100.00 \$ 38,500.00 6 12' DIAMETER STORM SEWER TREATMENT MANHOLE EA 1 \$ 50,000.00 \$ 50,000.00 7 6' DIAMETER SEWER MANHOLE EA 1 \$ 4,000.00 \$ 4,000.00 \$ 4,000.00 \$ 4,000.00 \$ 4,000.00 \$ 4,000.00 \$ 4,000.00 \$ 4,000.00 \$ 4,000.00 \$ 4,000.00 \$ 4,000.00 \$ 4,000.00 \$ 4,000.00 \$ 4,000.00 \$ 1,700.00 \$ 1,700.00 \$ 1,700.00 \$ 1,700.00 \$ 1,700.00 \$ 1,700.00 \$ 1,600.00 \$ 1,250.00 \$ 1,250.00 \$ 1,250.00 \$ 1,250.00 \$ 1,250.00 \$ 1,250.00	2	TRAFFIC CONTROL	LS	1	\$	3,500.00	\$	3,500.00					
STORM SEWER LF 20 \$ 25.00 \$ 500.00 5 36" RCP STORM SEWER PIPE LF 385 \$ 100.00 \$ 38,500.00 6 12' DIAMETER STORM SEWER TREATMENT MANHOLE EA 1 \$ 50,000.00 \$ 50,000.00 7 6' DIAMETER SEWER MANHOLE EA 1 \$ 4,000.00 \$ 4,000.00 STORM SEWER SUBTOTAL = \$ 93,000.00 INTERES STORM SEWER SUBTOTAL = \$ 93,000.00	3	TREE REMOVAL	EA	2	\$	750.00	\$	1,500.00					
4 REMOVE EXISTING STORM SEWER PIPE LF 20 \$ 25.00 \$ 500.00 5 36" RCP STORM SEWER PIPE LF 385 \$ 100.00 \$ 38,500.00 6 12' DIAMETER STORM SEWER TREATMENT MANHOLE EA 1 \$ 50,000.00 \$ 50,000.00 7 6' DIAMETER SEWER MANHOLE EA 1 \$ 50,000.00 \$ 4,000.00 STORM SEWER TREATMENT MANHOLE EA 1 \$ 4,000.00 \$ 4,000.00 STORM SEWER SUBTOTAL = \$ 93,000.00 STRETS 8 REMOVE EXISTING CONCRETE CURB LF 340 \$ 5.00 \$ 1,700.00 9 REMOVE EXISTING BITUMINOUS DRIVEWALK SF 1500 \$ 2.00 \$ 3,000.00 10 REMOVE EXISTING BITUMINOUS DRIVEWALY PAVEMENT SY 25 \$ 5.00 \$ 125.00 11 REMOVE EXISTING BITUMINOUS PAVEMENT SY 400 \$ 4.00 \$ 1,600.00 12 SALVAGE & REINSTALL SIGN EA 3 \$ 150.00 \$ 5,100.00 13 CONCETE CURB & GUTTER - 8618 LF 340 \$ 150.00 \$ 7,500.00 1		GENERAL SUBTOTAL = \$											
5 36" RCP STORM SEWER PIPE LF 385 \$ 100.00 \$ 38,500.00 6 12' DIAMETER STORM SEWER TREATMENT MANHOLE EA 1 \$ 50,000.00 \$ 50,000.00 7 6' DIAMETER SEWER MANHOLE EA 1 \$ 4,000.00 \$ 4,000.00 STORM SEWER SUBTOTAL = \$ 93,000.00 REMOVE EXISTING CONCRETE CURB LF 340 \$ 1.700.00 REMOVE EXISTING BITUMINOUS DRIVEWAY PAVEMENT SY 25 \$ 5.00 \$ 1,600.00 \$ 1,600.00 SELOCARETE CURB & REINSTALL SIGN EA 3 \$ 150.00	STORM SEWER												
6 12' DIAMETER STORM SEWER TREATMENT MANHOLE EA 1 \$ 50,000.00 \$ 50,000.00 7 6' DIAMETER SEWER MANHOLE EA 1 \$ 4,000.00 \$ 4,000.00 STORM SEWER SUBTOTAL = 93,000.00 STREETS \$ 93,000.00 \$ 1,700.00 \$ 1,700.00 9 REMOVE EXISTING CONCRETE CURB LF 340 \$ 5.00 \$ 1,700.00 9 REMOVE EXISTING CONCRETE SIDEWALK SF 1500 \$ 2.00 \$ 3,000.00 10 REMOVE EXISTING BITUMINOUS DRIVEWAY PAVEMENT SY 25 \$ 5.00 \$ 1,700.00 11 REMOVE EXISTING BITUMINOUS DRIVEWAY PAVEMENT SY 400 \$ 4.00 \$ 1,600.00 12 SALVAGE & REINSTALL SIGN EA 3 \$ 15.00 \$ 5,100.00 13 CONCRETE CURB & GUTTER - B618 LF 340 \$ 15.00 \$ 5,000.00 14 4' CONCRETE SIDEWALK SF 1500 \$ 2.000.00 \$ 1,800.00 16 TRUNCATED DOMES SF 40 \$ 50.00 \$ 2,000.00 <td>4</td> <td>REMOVE EXISTING STORM SEWER PIPE</td> <td>LF</td> <td>20</td> <td>\$</td> <td>25.00</td> <td>\$</td> <td>500.00</td>	4	REMOVE EXISTING STORM SEWER PIPE	LF	20	\$	25.00	\$	500.00					
7 6' DIAMETER SEWER MANHOLE EA 1 \$ 4,000.00 \$ 4,000.00 STORM SEWER SUBTOTAL = \$ 93,000.00 STREETS 8 REMOVE EXISTING CONCRETE CURB LF 340 \$ 5.00 \$ 1,700.00 9 REMOVE EXISTING CONCRETE SIDEWALK SF 1500 \$ 2.00 \$ 3,000.00 10 REMOVE EXISTING BITUMINOUS DRIVEWAY PAVEMENT SY 25 \$ 5.00 \$ 125.00 11 REMOVE EXISTING BITUMINOUS DRIVEWAY PAVEMENT SY 25 \$ 5.00 \$ 125.00 11 REMOVE EXISTING BITUMINOUS PAVEMENT SY 400 \$ 4.00 \$ 1,600.00 12 SALVAGE & REINSTALL SIGN EA 3 \$ 150.00 \$ 450.00 13 CONCRETE CURB & GUTTER - B618 LF 340 \$ 15.00 \$ 5.00.00 \$ 7,500.00 14 "CONCRETE SIDEWALK SF 1500 \$ 5.00 \$ 7,500.00 14 "CONCRETE SUBWALK SF 1500 \$ 5.00 \$ 2,000.00 15 6" PEDESTRIAN RAMP SF 200 \$ 9.00 \$ 1,800.00 \$ 1,800.00 \$ 1,800.00 10 <td>5</td> <td>36" RCP STORM SEWER PIPE</td> <td>LF</td> <td>385</td> <td>\$</td> <td>100.00</td> <td>\$</td> <td>38,500.00</td>	5	36" RCP STORM SEWER PIPE	LF	385	\$	100.00	\$	38,500.00					
STORM SEWER SUBTOTAL = \$ 93,000.00 STREETS 8 REMOVE EXISTING CONCRETE CURB LF 340 \$ 5.00 \$ 1,700.00 9 REMOVE EXISTING CONCRETE SIDEWALK SF 1500 \$ 2.00 \$ 3,000.00 10 REMOVE EXISTING CONCRETE SIDEWALK SF 1500 \$ 2.00 \$ 3,000.00 10 REMOVE EXISTING BITUMINOUS DRIVEWAY PAVEMENT SY 25 \$ 5.00 \$ 1,25.00 11 REMOVE EXISTING BITUMINOUS DRIVEWAY PAVEMENT SY 400 \$ 4.00 \$ 1,600.00 12 SALVAGE & REINSTALL SIGN EA 3 \$ 150.00 \$ 450.00 13 CONCRETE CURB & GUTTER - B618 LF 340 \$ 15.00 \$ 5,100.00 14 4" CONCRETE SIDEWALK SF 1500 \$ 5.00 \$ 7,500.00 15 6" PEDESTRIAN RAMP SF 200 \$ 9.00 \$ 1,800.00 16 TRUNCATED DOMES SF 40 \$ 50.00 \$ 2,000.00 17 BITUMINOUS MIXTURE FOR DRIVEWAYS TN 20 \$ 200.00	6	12' DIAMETER STORM SEWER TREATMENT MANHOLE	EA	1	\$	50,000.00	\$	50,000.00					
STREETS 8 REMOVE EXISTING CONCRETE CURB LF 340 \$ 5.00 \$ 1,700.00 9 REMOVE EXISTING CONCRETE SIDEWALK SF 1500 \$ 2.00 \$ 3,000.00 10 REMOVE EXISTING BITUMINOUS DRIVEWAY PAVEMENT SY 25 \$ 5.00 \$ 125.00 11 REMOVE EXISTING BITUMINOUS DRIVEWAY PAVEMENT SY 400 \$ 4.00 \$ 1,600.00 12 SALVAGE & REINSTALL SIGN EA 3 \$ 150.00 \$ 450.00 13 CONCRETE CURB & GUTTER - B618 LF 340 \$ 15.00 \$ 5,100.00 14 4" CONCRETE SIDEWALK SF 1500 \$ 5.00 \$ 7,500.00 15 6" PEDESTRIAN RAMP SF 200 \$ 9.00 \$ 1,800.00 16 TRUNCATED DOMES SF 40 \$ 50.00 \$ 2,000.00 17 BITUMINOUS MIXTURE FOR DRIVEWAYS TN 20 \$ 200.00 \$ 4,000.00 18 BITUMINOUS MIXTURE FOR STREET TN 150 \$ 90.00 \$ 13,500.00 20	7	6' DIAMETER SEWER MANHOLE	EA	1	\$	4,000.00	\$	4,000.00					
8 REMOVE EXISTING CONCRETE CURB LF 340 \$ 5.00 \$ 1,700.00 9 REMOVE EXISTING CONCRETE SIDEWALK SF 1500 \$ 2.00 \$ 3,000.00 10 REMOVE EXISTING BITUMINOUS DRIVEWAY PAVEMENT SY 25 \$ 5.00 \$ 125.00 11 REMOVE EXISTING BITUMINOUS DRIVEWAY PAVEMENT SY 400 \$ 4.00 \$ 1,600.00 12 SALVAGE & REINSTALL SIGN EA 3 \$ 150.00 \$ 450.00 13 CONCRETE CURB & GUTTER - B618 LF 340 \$ 15.00 \$ 5,100.00 14 "CONCRETE SIDEWALK SF 1500 \$ 5.000 \$ 7,500.00 15 6" PEDESTRIAN RAMP SF 200 \$ 9.000 \$ 1,800.00 16 TRUNCATED DOMES SF 40 \$ 50.00 \$ 2,000.00 17 BITUMINOUS MIXTURE FOR DRIVEWAYS TN 20 \$ 200.00 \$ 4,000.00 18 BITUMINOUS MIXTURE FOR STREET TN 150 \$ 90.00 \$ 13,500.00 20 HYDROSEED WITH MULCH <td< td=""><td></td><td></td><td>STC</td><td>ORM SEW</td><td>ER S</td><td>SUBTOTAL =</td><td>\$</td><td>93,000.00</td></td<>			STC	ORM SEW	ER S	SUBTOTAL =	\$	93,000.00					
9 REMOVE EXISTING CONCRETE SIDEWALK SF 1500 \$ 2.00 \$ 3,000.00 10 REMOVE EXISTING BITUMINOUS DRIVEWAY PAVEMENT SY 25 \$ 5.00 \$ 125.00 11 REMOVE EXISTING BITUMINOUS PAVEMENT SY 400 \$ 4.00 \$ 1,600.00 12 SALVAGE & REINSTALL SIGN EA 3 \$ 150.00 \$ 450.00 13 CONCRETE CURB & GUTTER - B618 LF 340 \$ 15.00 \$ 5,100.00 14 "CONCRETE SIDEWALK SF 1500 \$ 5.00 \$ 7,500.00 15 6" PEDESTRIAN RAMP SF 200 \$ 9.00 \$ 1,800.00 16 TRUNCATED DOMES SF 40 \$ 50.00 \$ 2,000.00 17 BITUMINOUS MIXTURE FOR DRIVEWAYS TN 20 \$ 200.00 \$ 1,625.00 19 TOPSOIL BORROW CY 65 \$ 25.00 \$ 1,625.00 20 HYDROSEED WITH MULCH SY 350	STREETS												
10 REMOVE EXISTING BITUMINOUS DRIVEWAY PAVEMENT SY 25 \$ 5.00 \$ 125.00 11 REMOVE EXISTING BITUMINOUS PAVEMENT SY 400 \$ 4.00 \$ 1,600.00 12 SALVAGE & REINSTALL SIGN EA 3 \$ 150.00 \$ 450.00 13 CONCRETE CURB & GUTTER - B618 LF 340 \$ 15.00 \$ 5,100.00 14 4" CONCRETE SIDEWALK SF 1500 \$ 5,00.00 \$ 7,500.00 15 6" PEDESTRIAN RAMP SF 200 \$ 9.00 \$ 1,800.00 16 TRUNCATED DOMES SF 40 \$ 50.00 \$ 2,000.00 17 BITUMINOUS MIXTURE FOR DRIVEWAYS TN 20 \$ 200.00 \$ 4,000.00 18 BITUMINOUS MIXTURE FOR STREET TN 150 \$ 90.00 \$ 1,3500.00 20 HYDROSEED WITH MULCH SY 350 \$ 3.00 \$ 1,050.00 21 RELOCATE UTILITY POLE EA	8	REMOVE EXISTING CONCRETE CURB	LF	340	\$	5.00	\$	1,700.00					
11 REMOVE EXISTING BITUMINOUS PAVEMENT SY 400 \$ 4.00 \$ 1,600.00 12 SALVAGE & REINSTALL SIGN EA 3 \$ 150.00 \$ 450.00 13 CONCRETE CURB & GUTTER - B618 LF 340 \$ 15.00 \$ 5,100.00 14 4" CONCRETE SIDEWALK SF 1500 \$ 5.00 \$ 7,500.00 15 6" PEDESTRIAN RAMP SF 200 \$ 9.00 \$ 1,800.00 16 TRUNCATED DOMES SF 40 \$ 50.00 \$ 2,000.00 17 BITUMINOUS MIXTURE FOR DRIVEWAYS TN 20 \$ 200.00 \$ 4,000.00 18 BITUMINOUS MIXTURE FOR STREET TN 150 \$ 90.00 \$ 13,500.00 19 TOPSOIL BORROW CY 65 \$ 25.00 \$ 1,625.00 20 HYDROSEED WITH MULCH SY 350 \$ 3.00 \$ 1,050.00 21 RELOCATE UTILITY POLE EA 3 \$ 10,000.00 \$ 30,000.00 21 RELOCATE UTILITY POLE EA 3 \$ 10,000.00 \$ 30,000.00 CONCEPT A - PART I TOTAL CONSTRUCTION COST = \$ 178,450.00<	9	REMOVE EXISTING CONCRETE SIDEWALK	SF	1500	\$	2.00	\$	3,000.00					
12 SALVAGE & REINSTALL SIGN EA 3 \$ 150.00 \$ 450.00 13 CONCRETE CURB & GUTTER - B618 LF 340 \$ 15.00 \$ 5,100.00 14 4" CONCRETE SIDEWALK SF 1500 \$ 5.00 \$ 7,500.00 15 6" PEDESTRIAN RAMP SF 200 \$ 9.00 \$ 1,800.00 16 TRUNCATED DOMES SF 40 \$ 50.00 \$ 2,000.00 17 BITUMINOUS MIXTURE FOR DRIVEWAYS TN 20 \$ 200.00 \$ 4,000.00 18 BITUMINOUS MIXTURE FOR STREET TN 150 \$ 90.00 \$ 13,500.00 19 TOPSOIL BORROW CY 65 \$ 25.00 \$ 1,625.00 20 HYDROSEED WITH MULCH SY 350 \$ 3.00 \$ 1,050.00 21 RELOCATE UTILITY POLE EA 3 \$ 10,000.00 \$ 30,000.00 CONCEPT A - PART I TOTAL CONSTRUCTION COST = \$ 178,450.00 CONCEPT A - PART I TOTAL CONSTRUCTION COST = \$ 178,450.00 CONCEPT A - PART I TOTAL CONSTRUCTION COST = \$ 178,450.00 INDIRECT (25%) = \$ 44,612.50	10	REMOVE EXISTING BITUMINOUS DRIVEWAY PAVEMENT	SY	25	\$	5.00	\$	125.00					
13 CONCRETE CURB & GUTTER - B618 LF 340 \$ 15.00 \$ 5,100.00 14 4" CONCRETE SIDEWALK SF 1500 \$ 5.00 \$ 7,500.00 15 6" PEDESTRIAN RAMP SF 200 \$ 9.00 \$ 1,800.00 16 TRUNCATED DOMES SF 40 \$ 50.00 \$ 2,000.00 17 BITUMINOUS MIXTURE FOR DRIVEWAYS TN 20 \$ 200.00 \$ 4,000.00 18 BITUMINOUS MIXTURE FOR STREET TN 150 \$ 90.00 \$ 13,500.00 19 TOPSOIL BORROW CY 65 \$ 25.00 \$ 1,625.00 20 HYDROSEED WITH MULCH SY 350 \$ 3.00 \$ 1,050.00 21 RELOCATE UTILITY POLE EA 3 \$ 10,000.00 \$ 30,000.00 CONCEPT A - PART I TOTAL CONSTRUCTION COST = \$ 73,450.00 CONCEPT A - PART I TOTAL CONSTRUCTION COST = \$ 178,450.00 INDIRECT (25%) = \$ 44,612.50	11	REMOVE EXISTING BITUMINOUS PAVEMENT	SY	400	\$	4.00	\$	1,600.00					
14 4" CONCRETE SIDEWALK SF 1500 \$ 5.00 \$ 7,500.00 15 6" PEDESTRIAN RAMP SF 200 \$ 9.00 \$ 1,800.00 16 TRUNCATED DOMES SF 40 \$ 50.00 \$ 2,000.00 17 BITUMINOUS MIXTURE FOR DRIVEWAYS TN 20 \$ 200.00 \$ 4,000.00 18 BITUMINOUS MIXTURE FOR STREET TN 150 \$ 90.00 \$ 13,500.00 19 TOPSOIL BORROW CY 65 \$ 25.00 \$ 1,625.00 20 HYDROSEED WITH MULCH SY 350 \$ 3.00 \$ 1,050.00 21 RELOCATE UTILITY POLE EA 3 \$ 10,000.00 \$ 30,000.00 CONCEPT A - PART I TOTAL CONSTRUCTION COST = \$ 178,450.00 CONCEPT A - PART I TOTAL CONSTRUCTION COST = \$ 178,450.00 INDIRECT (25%) = \$ 44,612.50	12	SALVAGE & REINSTALL SIGN	EA	3	\$	150.00	\$	450.00					
15 6" PEDESTRIAN RAMP SF 200 \$ 9.00 \$ 1,800.00 16 TRUNCATED DOMES SF 40 \$ 50.00 \$ 2,000.00 17 BITUMINOUS MIXTURE FOR DRIVEWAYS TN 20 \$ 200.00 \$ 4,000.00 18 BITUMINOUS MIXTURE FOR STREET TN 150 \$ 90.00 \$ 1,850.00 19 TOPSOIL BORROW CY 65 \$ 25.00 \$ 1,625.00 20 HYDROSEED WITH MULCH SY 350 \$ 3.00 \$ 1,050.00 21 RELOCATE UTILITY POLE EA 3 \$ 10,000.00 \$ 30,000.00 CONCEPT A - PART I TOTAL CONSTRUCTION COST = \$ 73,450.00 CONCEPT A - PART I TOTAL CONSTRUCTION COST = \$ 178,450.00 INDIRECT (25%) = \$ 44,612.50	13	CONCRETE CURB & GUTTER - B618	LF	340	\$	15.00	\$	5,100.00					
16 TRUNCATED DOMES SF 40 \$ 50.00 \$ 2,000.00 17 BITUMINOUS MIXTURE FOR DRIVEWAYS TN 20 \$ 200.00 \$ 4,000.00 18 BITUMINOUS MIXTURE FOR STREET TN 150 \$ 90.00 \$ 13,500.00 19 TOPSOIL BORROW CY 65 \$ 25.00 \$ 1,625.00 20 HYDROSEED WITH MULCH SY 350 \$ 3.00 \$ 1,050.00 21 RELOCATE UTILITY POLE EA 3 \$ 10,000.00 \$ 30,000.00 CONCEPT A - PART I TOTAL CONSTRUCTION COST = \$ 73,450.00 CONCEPT A - PART I TOTAL CONSTRUCTION COST = \$ 178,450.00 INDIRECT (25%) = \$ 44,612.50	14	4" CONCRETE SIDEWALK	SF	1500	\$	5.00	\$	7,500.00					
17 BITUMINOUS MIXTURE FOR DRIVEWAYS TN 20 \$ 200.00 \$ 4,000.00 18 BITUMINOUS MIXTURE FOR STREET TN 150 \$ 90.00 \$ 13,500.00 19 TOPSOIL BORROW CY 65 \$ 25.00 \$ 1,625.00 20 HYDROSEED WITH MULCH SY 350 \$ 3.00 \$ 1,050.00 21 RELOCATE UTILITY POLE EA 3 \$ 10,000.00 \$ 30,000.00 CONCEPT A - PART I TOTAL CONSTRUCTION COST = \$ 178,450.00 CONCEPT A - PART I TOTAL CONSTRUCTION COST = \$ 178,450.00 INDIRECT (25%) = \$ 44,612.50	15	6" PEDESTRIAN RAMP	SF	200	\$	9.00	\$	1,800.00					
18 BITUMINOUS MIXTURE FOR STREET TN 150 \$ 90.00 \$ 13,500.00 19 TOPSOIL BORROW CY 65 \$ 25.00 \$ 1,625.00 20 HYDROSEED WITH MULCH SY 350 \$ 3.00 \$ 1,050.00 21 RELOCATE UTILITY POLE EA 3 \$ 10,000.00 \$ 30,000.00 CONCEPT A - PART I TOTAL CONSTRUCTION COST = \$ 178,450.00 CONCEPT A - PART I TOTAL CONSTRUCTION COST = \$ 178,450.00 INDIRECT (25%) = \$ 44,612.50	16	TRUNCATED DOMES	SF	40	\$	50.00	\$	2,000.00					
19 TOPSOIL BORROW CY 65 \$ 25.00 \$ 1,625.00 20 HYDROSEED WITH MULCH SY 350 \$ 3.00 \$ 1,050.00 21 RELOCATE UTILITY POLE EA 3 \$ 10,000.00 \$ 30,000.00 STREETS SUBTOTAL = \$ 73,450.00 CONCEPT A - PART I TOTAL CONSTRUCTION COST = \$ 178,450.00 CONCEPT A - PART I TOTAL CONSTRUCTION COST = \$ 178,450.00 INDIRECT (25%) = \$ 44,612.50	17	BITUMINOUS MIXTURE FOR DRIVEWAYS	TN	20	\$	200.00	\$	4,000.00					
20 HYDROSEED WITH MULCH SY 350 \$ 3.00 \$ 1,050.00 21 RELOCATE UTILITY POLE EA 3 \$ 10,000.00 \$ 30,000.00 STREETS SUBTOTAL = \$ 73,450.00 CONCEPT A - PART I TOTAL CONSTRUCTION COST = \$ 178,450.00 CONCEPT A - PART I TOTAL CONSTRUCTION COST = \$ 178,450.00 INDIRECT (25%) = \$ 44,612.50	18	BITUMINOUS MIXTURE FOR STREET	TN	150	\$	90.00	\$	13,500.00					
21 RELOCATE UTILITY POLE EA 3 \$ 10,000.00 \$ 30,000.00 STREETS SUBTOTAL = \$ 73,450.00 CONCEPT A - PART I TOTAL CONSTRUCTION COST = \$ 178,450.00 CONCEPT A - PART I TOTAL CONSTRUCTION COST = \$ 178,450.00 CONCEPT A - PART I TOTAL CONSTRUCTION COST = \$ 178,450.00 CONTINGENCIES (10%) = \$ 17,845.00 INDIRECT (25%) = \$ 44,612.50	19	TOPSOIL BORROW	CY	65	\$	25.00	\$	1,625.00					
STREETS SUBTOTAL = 73,450.00 CONCEPT A - PART I TOTAL CONSTRUCTION COST = 178,450.00 CONTINGENCIES (10%) = 17,845.00 INDIRECT (25%) = 44,612.50	20	HYDROSEED WITH MULCH	SY	350	\$	3.00	\$	1,050.00					
CONCEPT A - PART I TOTAL CONSTRUCTION COST = 178,450.00 CONTINGENCIES (10%) = 17,845.00 INDIRECT (25%) = 44,612.50	21	RELOCATE UTILITY POLE	EA	3	\$	10,000.00	\$	30,000.00					
CONTINGENCIES (10%) = \$ 17,845.00 INDIRECT (25%) = \$ 44,612.50													
CONTINGENCIES (10%) = \$ 17,845.00 INDIRECT (25%) = \$ 44,612.50													
CONTINGENCIES (10%) = \$ 17,845.00 INDIRECT (25%) = \$ 44,612.50	CONCEPT A - PART I TOTAL CONSTRUCTION COST = \$												
INDIRECT (25%) = \$ 44,612.50													
CONCEPT A - PART I TOTAL COST = \$ 240,907.50		CC	ONCEPT			· · · ·		240,907.50					

APPENDIX A-3 PRELIMINARY COST ESTIMATES - CONCEPT A, PART II 2016 NORTHWOOD LAKE IMPROVEMENTS PROJECT SEPTEMBER 2014

	CONCEPT A - PART II												
Underground Storage Tank (Water Re-use)													
NO.	ITEM	UNITS	QTY		UNIT PRICE		TOTAL PRICE						
GENERAL													
1	MOBILIZATION	LS	1	\$	12,000.00	\$	12,000.00						
2	TRAFFIC CONTROL	LS	1	\$	6,000.00								
	\$	18,000.00											
RESERVOI													
3	COMMON EXCAVATION	LS	1	\$	20,000.00	\$	20,000.00						
4	CONCRETE	LS	1	\$	250,000.00	\$	250,000.00						
5	FINISH GRADING	LS	1	\$	12,500.00	\$	12,500.00						
			RES	SERVC	Dir Subtotal =	\$	282,500.00						
METALS													
6	GALV. STEP LADDERS	LS	1	\$	850.00	\$	850.00						
7	LADDER UP SAFETY POLE	EA	1	\$	150.00	\$	150.00						
				META	LS SUBTOTAL =	\$	1,000.00						
	СО	NCEPT A -	PART II CO	NSTR	JCTION COST =	\$	301,500.00						
			COI	NTING	SENCIES (10%) =	\$	30,150.00						
				IN	IDIRECT (25%) =	\$	75,375.00						
		CO	NCEPT A -	PART	II TOTAL COST =	\$	407,025.00						

APPENDIX A-4 PRELIMINARY COST ESTIMATES - CONCEPT A, PART III 2016 NORTHWOOD LAKE IMPROVEMENTS PROJECT SEPTEMBER 2014

	CONCEPT A									
	Water Re-use Piping; Pur					-				
NO.	ITEM	UNITS	QTY	l	JNIT PRICE		TOTAL PRICE			
GENERAL				<u> </u>						
1	MOBILIZATION	LS	1	\$	8,000.00	\$	8,000.00			
2	TRAFFIC CONTROL	LS	1	\$	4,000.00	\$	4,000.00			
			GENE	RAL	SUBTOTAL =	\$	12,000.00			
WATER N				\$	50.00					
3	4" FROM PUMP HOUSE TO IRRIGATION SYSTEM	LF	800	\$	40,000.00					
			WATER M	AIN	SUBTOTAL =	\$	40,000.00			
	DUSE - 111 GPM									
4	BUILDING	SF	320	\$	150.00	\$	48,000.00			
5	BUILDING - ELECTRICAL WORK	LS	1	\$	7,000.00	\$	7,000.00			
6	BUILDING - PLUMBING & HVAC WORK	LS	1	\$	10,000.00	\$	10,000.00			
7	MISC. BUILDING AMENITIES	LS	1	\$	2,500.00	\$	2,500.00			
			PUMP HO	USE	SUBTOTAL =	\$	67,500.00			
				.	10.000.00					
8	6" VERTICAL PUMP & MOTOR SET IN RESERVOIR	EA	2	\$	12,000.00	\$	24,000.00			
9	6" PUMP COLUMN X 16'	EA	2	\$	800.00	\$	1,600.00			
10	6" CHECK VALVE	EA	2	\$	1,500.00	\$	3,000.00			
11	VFD CONTROL PANEL FOR 15 HP	EA	1	\$	5,000.00	\$	5,000.00			
12	ELECTRICAL (PROCESS/MCC)	LS	1	\$	12,000.00	\$	12,000.00			
		PUMP	S & CONIR	OLS	SUBTOTAL =	\$	45,600.00			
	ATION PIPING & AMENITIES	1	•							
13	SELF-CLEANING FILTER	EA	2	\$	10,000.00	\$	20,000.00			
14	PRESSURE TANKS	EA	1	\$	1,000.00	\$	1,000.00			
15	PROPELLER METER	EA	1	\$	2,500.00	\$	2,500.00			
16	4" RPZ BACKFLOW PREVENTER	EA	1	\$	3,000.00	\$	3,000.00			
	PUMP STA	TION PIPIN	g & Ameni	TIES	SUBTOTAL =	\$	26,500.00			
PROCESS	S PIPING									
17	4" BUTTERFLY VALVE	EA	8	\$	250.00	\$	2,000.00			
18	4" CHECK VALVE	EA	2	\$	750.00	\$	1,500.00			
19	exp. Joints, Rubber & Adapter	EA	1	\$	500.00	\$	500.00			
20	4" FLG. DIP C153	FT	40	\$	35.00	\$	1,400.00			
21	6" FITTINGS	LB	1000	\$	5.00	\$	5,000.00			
22	MISC. SPECIAL, BOLTS/GASKETS/ETC	LS	1	\$	500.00	\$	500.00			
23	LABOR	LS	1	\$	4,500.00	\$	4,500.00			
STREETS SUBTOTAL = \$										
							15,400.00			
	CONCE	EPT A - PART		RUCI	TION COST =	\$	207,000.00			
					CIES (10%) =		20,700.00			
INDIRECT (25%) = \$										
CONCEPT A - PART III TOTAL COST = \$										

APPENDIX A-5 PRELIMINARY COST ESTIMATES - CONCEPT A, PART IV 2016 NORTHWOOD LAKE IMPROVEMENTS PROJECT SEPTEMBER 2014

CONCEPT A - PART IV												
	Rain Gardens (Including Draintile, Sump MH, Pipe, Rip Rap, EOF's & Trail Improvements)											
NO.	ITEM	UNITS	QTY	l	UNIT PRICE	Ţ	OTAL PRICE					
GENER		1										
-	MOBILIZATION	LS	1	\$	10,000.00	\$	10,000.00					
2	TRAFFIC CONTROL	LS	1	\$	5,000.00	\$	5,000.00					
			GENE	RAL	SUBTOTAL =	\$	15,000.00					
	ARDENS & STORM SEWER		1	¢	500.00	¢	500.00					
3	REMOVE EXISTING STORM MANHOLE OR CATCH BASIN	EA EA	1	\$ \$	500.00 750.00	\$ \$	500.00 2,250.00					
4 5	REMOVE TREE CLEARING & GRUBBING	LS	3	\$ \$	2,000.00	۶ ۶	2,250.00					
6	CONSTRUCT RAIN GARDEN	SF	11050	⊅ \$	2,000.00	⊅ \$	55,250.00					
7	DOUBLE SHREDDED HARDWOOD MULCH (3" DEPTH)	CY	150	.⊅ \$	50.00	₽ \$	7,500.00					
9	PLANTINGS	LS	130	\$	50,000.00	\$	50,000.00					
10	6" PERFORATED HDPE DRAIN TILE	LF	600	\$	30.00	\$	18,000.00					
11	INSTALL SUMP MANHOLE	EA	1	\$	4,000.00	\$	4,000.00					
12	24" RCP STORM SEWER	LF	65	\$	40.00	\$	2,600.00					
13	OUTLET CONTROL STRUCTURE	EA	1	\$	3,000.00	\$	3,000.00					
14	24" FLARED END SECTION	EA	1	\$	1,000.00	\$	1,000.00					
15	EMERGENCY OVERFLOW (TURF REINFORCEMENT MAT)	SY	340	\$	15.00	\$	5,100.00					
RAIN GARDENS & STORM SEWER SUBTOTAL = \$												
STREETS												
16	REMOVE EXISTING CONCRETE CURB	LF	20	\$	5.00	\$	100.00					
17	SALVAGE & REINSTALL SIGN	EA	1	\$	150.00	\$	150.00					
18	REMOVE EXISTING BITUMINOUS PAVEMENT	SY	30	\$	4.00	\$	120.00					
19	CONCRETE CURB & GUTTER - B618	LF	20	\$	15.00	\$	300.00					
20	6" PEDESTRIAN RAMP	SF	250	\$	9.00	\$	2,250.00					
21	TRUNCATED DOMES	SF	32	\$	50.00	\$	1,600.00					
22	BITUMINOUS MIXTURE FOR STREET	TN	10	\$	90.00	\$	900.00					
23	AGGREGATE BASE, CLASS V - STREET	TN	20	\$	20.00	\$	400.00					
24	SELECT GRANULAR BORROW - STREET	СҮ	15	\$	15.00	\$	225.00					
25	2" BITUMINOUS MIXTURE FOR TRAILS	TN	90	\$	80.00	\$	7,200.00					
	AGGREGATE BASE, CLASS V - TRAIL	TN	315	\$	12.00	\$	3,780.00					
27	SELECT GRANULAR BORROW - TRAIL	CY	270	\$	8.00	\$	2,160.00					
28	TOPSOIL BORROW	CY	400	\$	25.00	\$	10,000.00					
						۹ \$	7,200.00					
STREETS SUBTOTAL = \$												
CONCEPT A - PART IV CONSTRUCTION COST = \$ 202,585.00												
CONTINGENCIES (10%) = \$ 20,258.50 INDIRECT (25%) = \$ 50,646.25												
INDIRECT (25%) = CONCEPT A - PART IV TOTAL COST =												
		CONCEP	IA - PARI		UTAL CUST =	φ	273,489.75					

APPENDIX A-6 PRELIMINARY COST ESTIMATES - CONCEPT A, PART V 2016 NORTHWOOD LAKE IMPROVEMENTS PROJECT SEPTEMBER 2014

	CONCEPT A - PART V											
Loop Trail (Non-Storm Water Related Improvements)												
NO.	ITEM	UNITS	QTY	U	NIT PRICE	TC	DTAL PRICE					
GENERAL												
1	MOBILIZATION	LS	1	\$	1,000.00	\$	1,000.00					
2	TRAFFIC CONTROL	LS	1	\$	500.00	\$	500.00					
	GENERAL SUBTOTAL = \$											
TRAIL	TRAIL											
3	3" BITUMINOUS MIXTURE FOR TRAILS	TN	90	\$	80.00	\$	7,200.00					
4	AGGREGATE BASE, CLASS V	TN	210	\$	20.00	\$	4,200.00					
5	SELECT GRANULAR BORROW	CY	180	\$	15.00	\$	2,700.00					
6	TOPSOIL BORROW	CY	80	\$	25.00	\$	2,000.00					
7	HYDROSEED WITH MULCH	SY	450	\$	3.00	\$	1,350.00					
			STRE	ets si	JBTOTAL =	\$	17,450.00					
	CONCEP	r a - part v	CONSTR	UCTIO	ON COST =	\$	18,950.00					
CONTINGENCIES (10%) = \$												
			IN	IDIRE	CT (25%) =	\$	4,737.50					
		CONCEPT	A - PART	V TO	FAL COST =	\$	25,582.50					

APPENDIX A-7 PRELIMINARY COST ESTIMATES - CONCEPT B, PART I 2016 NORTHWOOD LAKE IMPROVEMENTS PROJECT SEPTEMBER 2014

CONCEPT B - PART I											
	Pond (Including Diversion Str	ucture, Rip	Rap, EOF)							
NO.	ITEM	UNITS	QTY	ι	JNIT PRICE	T	OTAL PRICE				
GENERAL											
1	MOBILIZATION	LS	1	\$	3,000.00	\$	3,000.00				
2	TRAFFIC CONTROL	LS	1	\$	1,500.00	\$	1,500.00				
			GENER	AL S	SUBTOTAL =	\$	4,500.00				
DEMOLITI	ON/EXCAVATION	-	-								
3	TREE REMOVAL	EA	3	\$	750.00	\$	2,250.00				
4	CLEARING & GRUBBING	LS	1	\$	1,000.00	\$	1,000.00				
5	COMMON EXCAVATION	CY	4000	\$	4.00	\$	16,000.00				
6	SITE GRADING	LS	1	\$	15,000.00	\$	15,000.00				
	DEN	10LITION/E	XCAVATIO	ON S	SUBTOTAL =	\$	34,250.00				
STORM SE	WER										
7	INSTALL STORM DIVERSION STRUCTURE	EA	1	\$	15,000.00	\$	15,000.00				
8	36" RCP STORM SEWER PIPE	LF	50	\$	80.00	\$	4,000.00				
9	36" RCP FLARED END SECTION	EA	1	\$	900.00	\$	900.00				
10	CLASS III RIP RAP	CY	50	\$	85.00	\$	4,250.00				
11	PLANTINGS	LS	1	\$	25,000.00	\$	25,000.00				
		S	TORM SEW	'ER S	SUBTOTAL =	\$	49,150.00				
STREETS											
16	3" BITUMINOUS MIXTURE FOR TRAILS	TN	90	\$	25.00	\$	2,250.00				
17	AGGREGATE BASE, CLASS V	TN	205	\$	3.00	\$	615.00				
18	SELECT GRANULAR BORROW	CY	180	\$	8.00	\$	1,440.00				
19	TOPSOIL BORROW	CY	170	\$	25.00	\$	4,250.00				
20	HYDROSEED WITH MULCH	SY	1000	\$	3.00	\$	3,000.00				
STREETS SUBTOTAL = \$											
CONCEPT C - PART I CONSTRUCTION COST = \$											
CONTINGENCIES (10%) = \$											
					ECT (25%) =		9,945.50 24,863.75				
		CONCEP	T C - PART	I TC	TAL COST =	\$	134,264.25				

APPENDIX A-8 PRELIMINARY COST ESTIMATES - CONCEPT B, PART II 2016 NORTHWOOD LAKE IMPROVEMENTS PROJECT SEPTEMBER 2014

CONCEPT B - PART II												
Loop Trail												
NO.	ITEM	UNITS	QTY	U	NIT PRICE	TC	DTAL PRICE					
GENERAL		-										
1	MOBILIZATION	LS	1	\$	1,000.00	\$	1,000.00					
2	TRAFFIC CONTROL	LS	1	\$	500.00	\$	500.00					
GENERAL SUBTOTAL = \$												
DEMOLITI	ON/EXCAVATION											
3	REMOVE TREE	EA	3	\$	750.00	\$	2,250.00					
4	CLEARING & GRUBBING	LS	1	\$	500.00	\$	500.00					
	DEMO	OLITION/EX	CAVATIO	N SU	JBTOTAL =	\$	2,750.00					
TRAIL												
5	3" BITUMINOUS MIXTURE FOR TRAILS	TN	90	\$	80.00	\$	7,200.00					
6	AGGREGATE BASE, CLASS V	TN	210	\$	20.00	\$	4,200.00					
7	SELECT GRANULAR BORROW	CY	180	\$	15.00	\$	2,700.00					
8	TOPSOIL BORROW	CY	80	\$	25.00	\$	2,000.00					
9	HYDROSEED WITH MULCH	SY	450	\$	3.00	\$	1,350.00					
			STREET	s su	ibtotal =	\$	17,450.00					
CONCEPT B - PART II CONSTRUCTION COST = \$												
CONTINGENCIES (10%) = \$												
INDIRECT (25%) = \$												
		CONCEPT	B - PART II	TOT	AL COST =	\$	29,295.00					

APPENDIX A-9 PRELIMINARY COST ESTIMATES - CONCEPT C, PART I 2016 NORTHWOOD LAKE IMPROVEMENTS PROJECT SEPTEMBER 2014

CONCEPT C - PART I											
	Pond (Including Diversion Structure)	, Curb Cut,	Rip Rap, E	OF)							
NO.	ITEM	UNITS	QTY	ι	JNIT PRICE	T	OTAL PRICE				
GENERAL	•										
1	MOBILIZATION	LS	1	\$	3,500.00	\$	3,500.00				
2	TRAFFIC CONTROL	LS	1	\$	1,750.00	\$	1,750.00				
	•		GENER	RAL S	SUBTOTAL =	\$	5,250.00				
DEMOLITION/EXCAVATION											
3	TREE REMOVAL	EA	7	\$	500.00	\$	3,500.00				
4	CLEARING & GRUBBING	LS	1	\$	800.00	\$	800.00				
5	COMMON EXCAVATION	CY	2400	\$	4.00	\$	9,600.00				
6	REMOVE EXISTING STORM SEWER PIPE	LF	30	\$	12.00	\$	360.00				
7	REMOVE EXISTING BITUMINOUS PAVEMENT	SY	56	\$	4.00	\$	224.00				
8	REMOVE EXISTING CONCRETE CURB	LF	40	\$	5.00	\$	200.00				
9	POND GRADING	LS	1	\$	35,000.00	\$	35,000.00				
	DEI	MOLITION/	EXCAVATI	ON S	SUBTOTAL =	\$	49,684.00				
STORM SE	WER										
10	INSTALL SUMP MANHOLE	EA	1	\$	4,000.00	\$	4,000.00				
11	24" RCP STORM SEWER PIPE	LF	140	\$	65.00	\$	9,100.00				
13	24" RCP FLARED END SECTION	EA	1	\$	900.00	\$	900.00				
15	CLASS III RIP RAP	CY	15	\$	85.00	\$	1,275.00				
16	CONNECT TO EXISTING STORM STRUCTURE	EA	1	\$	700.00	\$	700.00				
17	PLANTINGS	LS	1	\$	20,000.00	\$	20,000.00				
18	REMOVE & REPLACE CASTING & RINGS	EA	1	\$	800.00	\$	800.00				
		5	STORM SEW	/ER S	SUBTOTAL =	\$	36,775.00				
STREETS											
19	REMOVE EXISTING CONCRETE CURB	LF	40	\$	5.00	\$	200.00				
20	REMOVE EXISTING BITUMINOUS PAVEMENT	SY	60	\$	4.00	\$	240.00				
21	CONCRETE CURB & GUTTER - B618	LF	40	\$	15.00	\$	600.00				
22	BITUMINOUS MIXTURE FOR STREET	TN	20	\$	90.00	\$	1,800.00				
23	TOPSOIL BORROW	СҮ	400	\$	25.00	\$	10,000.00				
24	HYDROSEED WITH MULCH	SY	2300	\$	3.00	\$	6,900.00				
				<u> </u>	SUBTOTAL =	\$	19,740.00				
CONCEPT C - PART I CONSTRUCTION COST = \$											
CONTINGENCIES (10%) = \$											
INDIRECT (25%) = \$											
		CONCER			DTAL COST =		27,862.25 150,456.15				

Appendix B Soil Boring Report

/ CONSULTANTS • ENVIRONMENTAL • GEOTECHNICAL • MATERIALS • FORENSICS

August 20, 2014

Stantec 2335 Highway 36 West St. Paul, MN 55113

Attention: Chris Long

RE: Soil Exploration Northwood Lake New Hope, Minnesota AET Project No. 01-06193

Dear Mr. Long:

Per our July 11, 2014 proposal, we are submitting the soil boring logs and laboratory test results for the potential stormwater management improvements around Northwood Lake.

Field Work

We performed a total of 10 geoprobe borings. Please refer to the attached sheet entitled "Environmental Sampling Methods – Push Probes" for details regarding drilling and sampling of geoprobe borings. The approximate boring locations are shown on the attached aerial photos.

We performed three borings on the west side of Northwood Lake. At these borings we generally found 4 to 9 feet of clayey fill overlying swamp deposits and then alluvial soils. The soils are generally slow draining, so the fact that a water level wasn't encountered in a boring doesn't mean that the ground water level is below the boring depth. We installed a piezometer at Boring 3 and measured a water level at 4.7 feet below grade (elevation 892½) on 7/24/14 and this should be representative of the approximate ground water level at Borings 1 and 2 also.

We advanced seven borings on the east side of Northwood Lake. Borings 4 through 7 were located in a relatively low area (roughly a couple feet above the lake level), and at these borings we generally found fill over swamp deposits. At the remaining borings away from the lake and at higher elevations, fill and glacial till were found. We installed a piezometer in Boring 8 to 9 feet below grade – this was dry on 7/24/14 indicating the ground water level was below about elevation $891\frac{1}{2}$. We found shallow ground water at elevations slightly above the lake level in Borings 4 thru 7. We didn't measure a water level in Borings 9 and 10, and presumably it is in between the lake level (about 885) and elevation $891\frac{1}{2}$.

AET Project No. 01-06193 August 20, 2014 Page 2 of 2

Laboratory Testing

We submitted three soil samples to Pace Analytical Services, Inc., for environmental testing. The soil samples were collected from 1 to 4 feet deep in Borings 1 through 3. The samples were analyzed for:

- Copper by method EPA 6010,
- Arsenic by method EPA 6010,
- Polycyclic Aromatic Hydrocarbons (PAHs) by method EPA 8270.

The laboratory analytical results indicated that metals were present in concentrations less than Minnesota Pollution Control Agency (MPCA) established residential soil reference values (SRVs). The results for the PAHs indicated non-detect concentrations in two of the three samples collected (B-1 and B-3). Sample B-2 had detections of various chemical compounds, but all were below their respective residential SRV. The Benzo(a)Pyrene equivalent (BaP equivalent) for sample B-2 was calculated to be 0.081(mg/kg) which is less than the residential SRV. The sampled soils meet the criteria of residential reuse soils for the analyzed compounds Copper, Arsenic and PAHs.

Closure

If you have any questions regarding the work reported herein, or if we can be of further service to you, please do not hesitate to contact me at 651-789-4645.

Report Prepared by:

American Engineering Testing

Jay Brekke, P.E. Senior Engineer jbrekke@amengtest.com

Report Reviewed by:

American Engineering Testing

Allan Kestler, EIT Environmental Engineer II

Attachments: Environmental Sampling Methods – Push Probes Boring Locations and Subsurface Boring Logs Laboratory Analytical Results

Contamination Reduction

The push-probe down hole tooling is steam cleaned prior to mobilization. New clear plastic liners are used for each drive, and the tooling is cleaned between borings to minimize cross contamination. The cleaning procedure consists of an alconox detergent-water wash using a brush, followed by a tapwater rinse. The alconox wash and rinse water are changed regularly – typically between borings. Certain types of projects may entail more stringent decontamination procedures.

Soil Boring Advancement and Limitations

Soil sampling in the soil borings is performed using a Geoprobe® system. Soil borings are advanced using a vehiclemounted, hydraulically-powered, soil probing machine, which uses static force (vehicle weight) and percussion to advance small-diameter sampling tools into the subsurface for collecting soil core, soil gas, or groundwater samples. Using this system, a 2" outer-diameter (OD) MacroCore® soil sampler containing a 1.75" OD clear plastic liner is driven into the soil in distinct 48" depth intervals, except where subsurface conditions limit the equipment to shorter drive lengths. In cases where soil recovery is poor, typically due to grain-size or moisture, a smaller "discrete" soil sampler (1.5" OD containing a 1.0" OD clear plastic liner) with a retractable piston tip may be used to collect soil in distinct 24" depth intervals. Probe rods are added to extend borings deeper beneath the surface. The plastic liner is removed from the sampler and cut lengthwise to expose discrete sections of soil for classification and sampling.

Unless actually observed, contacts between soil layers are estimated based on the spacing of samples and the action of the push-probe system. Cobbles, boulders, and other large objects generally cannot be recovered from push-probe soil borings, and may be present in the ground even if they are not noted on the boring logs. Impacted soils or buried debris may be present that are not observed due to the spacing and depths of sampling points. Best judgment determinations, based on known site conditions and past experience in similar situations, do not guarantee identification of all impacts.

Soil Classification

As the samples are obtained in the field, they are visually and manually classified by the field staff. Representative portions of the samples may be returned to the laboratory for further observation and for verification of the field classification. Logs of the borings are prepared indicating the depth and identification of the various strata, water level information, and other pertinent information regarding the method of advancing the borings. A chart illustrating the descriptive terminology and symbols used on the borings logs is also provided.

Boring logs include judgments of the geologic depositional origin. This judgment is primarily based on observations of the soil samples, which can be limited. Observations of the surrounding topography, vegetation, and development can sometimes aid this judgment. Visual/odor observations may aid in assessing impacts but are not relied on exclusively.

Soil Sample Vapor Screening

Soil samples collected directly from the sampling liner are screened with a photoionization detector (PID) for the presence of organic vapors with ionization potentials less than the lamp voltage. The PID is calibrated for direct reading in parts-permillion-volume (PPMv) of a benzene equivalent. Soil samples are collected and screened according to the bag-headspace field screening procedure, which consists of placing freshly collected soil into a polyethylene Whirl-Pak or freezer "baggie" (i.e., bag), sealing the bag to contain an air pocket (i.e., headspace), and allowing 10 to 20 minutes for vapors to disperse from the soil to the headspace. The highest reading upon inserting the PID probe into the bag headspace – typically attained within two to five seconds of probe insertion – is recorded on the boring log. Excessive moisture, temperature extremes, ambient vapors, or other unusual field circumstances can affect screening results.

Other Field Screening

For certain sites, field screening may be conducted for additional parameters in accordance with AET's Field Screening Methods Supplemental information sheet.

Soil Sampling for Chemical Analysis

Soil samples obtained for chemical analysis are collected directly from the sampling liner and placed into laboratoryprepared containers with appropriate preservatives, according to laboratory protocols. The samples are delivered to the analytical laboratory within prescribed holding times, accompanied by proper chain-of-custody forms.

(02/2013)

Page 1 of 2

AMERICAN ENGINEERING TESTING, INC.

Not all methods summarized on this information sheet are conducted at all sites. Special conditions may also occur which require modifications to these methods. Any descriptions of field methods within the report text take precedence.

Water Level Measurements

The groundwater level measurements are shown at the bottom of the boring logs. The following information appears under Water Level Measurements on the logs:

- Date and time of measurement
- Sampled Depth: greatest depth of soil sampling at the time of measurement
- Cave-in Depth: tape-measured depth of borehole
- Water Level: tape-measured depth of free water in the borehole

The true depth of the water table at the boring locations may be different from the water levels measured in the boreholes. This is possible because several factors can affect the water level measurements in the borehole such as permeability of each soil layer in profile, presence of perched water, amount of time between water-level readings, and weather conditions.

Groundwater Sampling for Chemical Analysis

Groundwater sampling in the boreholes/temporary monitoring wells is performed using a Geoprobe® system. Using this system, a 1.5" OD groundwater sampler with a 41" stainless-steel or PVC screen is driven into the soil to the desired sampling depth using static and percussive forces. The operation of extension rods through the hollow interior of the probe rods enables advancement of the screen beyond the depth of the probe rods while maintaining a closed system above the desired sampling depth.

Using a peristaltic pump or check-valve assembly, samples are pumped directly from the screen through new polyethylene tubing extended to depth through the probe rods. Samples are collected in laboratory-prepared containers with appropriate preservatives, according to laboratory protocols. For analyses in which field-filtering is performed, samples are vacuum-filtered through a new dedicated plastic filter with 0.45- μ m pores. The samples are delivered to the analytical laboratory within prescribed holding times, accompanied by proper chain-of-custody forms.

Because boreholes are not typically in equilibrium with ambient groundwater, results provide qualitative groundwater data. Purging additional water prior to sampling may improve the data representativeness somewhat. Monitoring wells are necessary to obtain more accurate quantitative groundwater data.

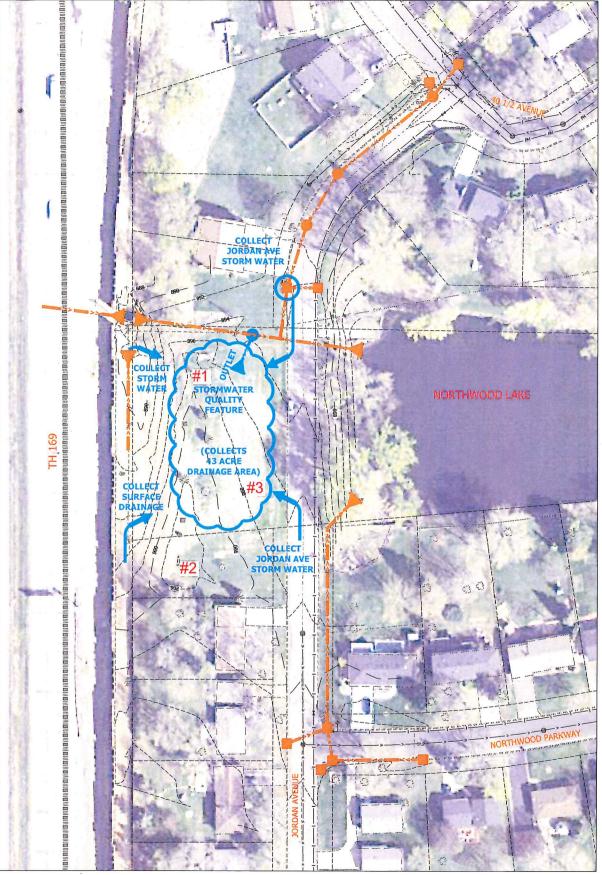
Soil Vapor Probes

For assessment of vapor encroachment or intrusion into structures, soil vapor sampling is performed using a Geoprobe® system. A 1.25" OD retractable rod with soil vapor adaptor tip is driven into the soil to the desired sampling depth (typically basement floor or base-of-foundation) using static and percussive forces. New polyethylene tubing is attached to the tip, and the rods are retracted approximately 6", creating a closed system. Air samples are pumped through the tubing, and collected in either summa canisters or tedlar bags, as approved by regulatory authorities. The samples are delivered to the analytical laboratory within prescribed holding times, accompanied by proper chain-of-custody forms.

As appropriate, bore holes are stabilized in relative equilibrium with air in soil void spaces by removing a minimum of two borehole volumes of air as measured by a flow gauge. Due to the actions of push-probe tools, potential surface leakage, and diffusion from surrounding soils, air samples may not attain equilibrium with the air in soil void spaces; this method is considered a screening measurement.

Boring Elevations, Locations, and Abandonment

Following sampling, ground surface elevations at boring locations are typically measured to the nearest 0.1 foot. If a permanent benchmark of known elevation is unavailable, the measurement is referenced to a nearby temporary benchmark given the arbitrary reference elevation of 100.0 feet. Horizontal location control is typically based on tape measurements from fixed site features. Certain types of projects may entail more stringent measures such as global positioning systems (GPS) or contracting registered surveyors.


Boreholes/temporary monitoring wells are abandoned using appropriate grouting materials and methods. Licensed well contractors on staff ensure compliance with state and local standards.

Page 2 of 2

(02/2013)

AMERICAN ENGINEERING TESTING, INC.

Not all methods summarized on this information sheet are conducted at all sites. Special conditions may also occur which require modifications to these methods. Any descriptions of field methods within the report text take precedence.

PROPOSED BORING LOCATIONS =

JORDAN OUTLOT POND STORMWATER IMPROVEMENT CONCEPT

N 30 60

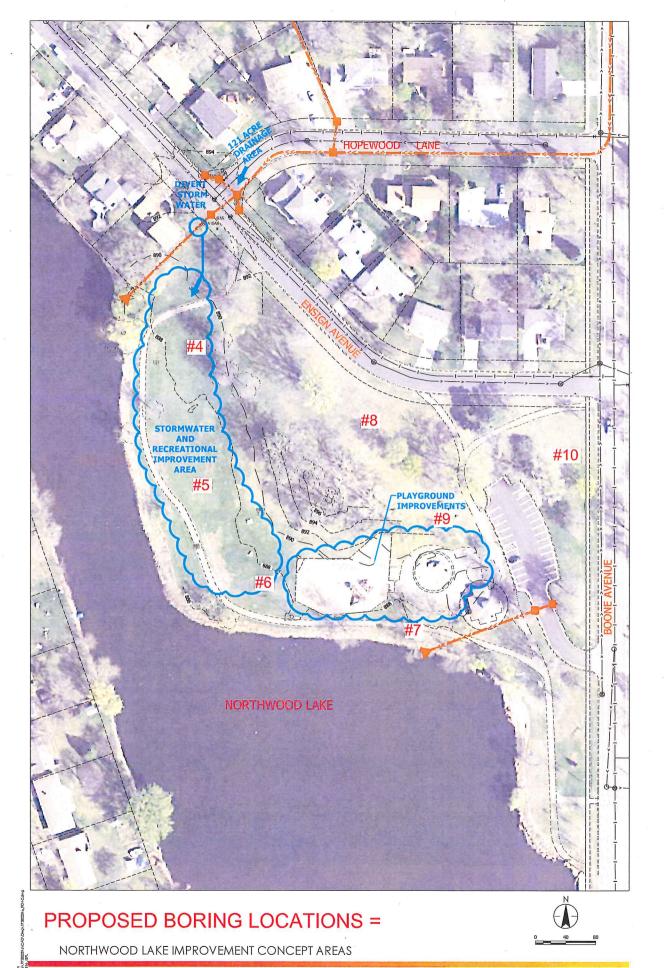
CITY OF NEW HOPE, MINNESOTA 2016 NORTHWOOD LAKE IMPROVEMENTS

Pibl Dale: 06/24 Drawing name: Viete: 18/90001 FIGURE 1

DATE: JUNE 2014

SUBSURFACE BORING LOG

ſ	AET JO	OB NO: 01-06193		LOG OF BORING NO. 1 (p. 1 of 1)											
	PROJE	CT: Northwood Lak	e; New H	lope, MN	I										
	DEPTH IN FEET	SURFACE ELEVATION:	897.4			GEOLOGY	N	MC	SAMPLE	REC) & LA	BORAT	ORY	FESTS
	FËET	MATERIAL I							TYPE	IN.	WC	DEN	LL	PL	%-#200
		FILL, mostly clayey sand, brown, a little brown and li	trace roots, ight gray	grayish		FILL			0						
	1 —								Ø						
								М	0	40					
	2 —														
		-							8						
	3 -	FILL, mostly organic clay,	trace roots	, black					Ħ	-					
		(OH)						M	0						
	4 —	ORGANIC CLAY, trace re	oots, black,	, a little		SWAMP DEPOSIT									
	5 —	brown (OH)				DEI USIT		M							-
	5 —								0						
	6 —														
	-				222			M		58					
	7 —				115			1	8						
		FAT CLAV slightly organ	uic dark br	ownish		FINE	-		A						
	8 —	FAT CLAY, slightly organ gray, a little black, a lens o	f organic c	lay (CH)		ALLUVIUM			8						
			,					M	0						
	9 —							141							
									0						
	10 —	END OF BORING							<u> </u>						
707															
ACTTOF1TWELL.GUI 1/2014	DFF	PTH: DRILLING METHOD			 WAT	 ER LEVEL MEA	 	 EMEN	LL TS	l		<u> </u>	NOTE	DEE	
			DATE	TIME	SAMPI		·	/E-IN PTH	DRILLI FLUID LE	NG	WATI LEVI		NOTE: THE A		
80.GL	0.	-10' Geoprobe	7/14/14		DEP	DEPIH		riH		VEL	Non		SHEET		
00-10			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										EXPLA	NATIO	ON OF
	BORIN	IG LETED: 7/14/14] 1	FERMIN		
	DR: P		e										TH	IS LO	G


SUBSURFACE BORING LOG

AET JO	DB NO: 01-06193					LC	OG OF	BORING N	0		2 (1). 1 of	· 1)	
PROJE	CT: Northwood Lak	e; New H	lope, MN	J										
DEPTH IN FEET	SURFACE ELEVATION:	902.4			GEOLOGY	N	мс	SAMPLE TYPE	REC	FIELI) & L/	ABORAT	TORY 7	ESŤS
FEET	MATERIAL I					19	MC	TYPE	IN.	WC	DEN		PL	%-#200
1 -	FILL, mostly clayey sand v little gravel and clayey sand little light brown and gray	vith organio d, grayish b	c fines, a prown, a	F	ILL		М		55					
2														
3							M							
4 -														
5 -														
6 -														
7							M		58					
8 -														
9 -	SAPRIC PEAT, black, a li of organic clay and lean cl	ttle gray, la ay (PT)	minations		SWAMP DEPOSIT		М							
10 -	END OF BORING													
014														
DE	PTH: DRILLING METHOD			WATE	R LEVEL MEA	L SURI	EMEN	TS	I	1	l	NOTE:	REFF	R TO
	-10' Geoprobe	DATE	TIME	SAMPLE	ED CASING I DEPTH	CAV	VE-IN PTH	DRILLI FLUID LE	NG VEL	WAT LEVI	ER	THE A		
0 0	-10 0001000	7/14/14								Non		SHEE	TS FOI	R AN
5												EXPLA		
BORIN COMP	NG PLETED: 7/14/14											TERMI		
DR: P		be										TH	IIS LO	3

SUBSURFACE BORING LOG

AET JO	OB NO: 01-06193				LC)G OF	BORING N	0		3 (p	. 1 of	1)	
PROJE	CT: Northwood Lak	e; New Hope, MN											
DEPTH IN FEET	SURFACE ELEVATION: MATERIAL I	897.3 DESCRIPTION		GEOLOGY	N	мс	SAMPLE TYPE	REC IN,	FIELI WC	D & LA DEN	BORAT		FESTS %-#200
	FILL, mostly clayey sand, roots, grayish brown, a littl			FILL		М		58					
1	FILL, mostly clayey sand v dark brown	vith gravel, brown and		-		М							
2	FILL, mostly clayey sand, brown	a little gravel, dark											
3 -						M							
4 -	FILL, mostly organic clay, clay, trace roots, black, a li					V							
5 -						M		55					
6 -	ORGANIC CLAY, black, fat clay around 6 ¹ /2' (OH)	a little gray, a lens of		SWAMP DEPOSIT		M							ţ
7 -	-					M							
8	CLAYEY SAND, a little g brownish gray, a little dark organic clay (SC)	ravel, trace roots, brown, a lens of		MIXED ALLUVIUM		M							
9 -													
10 -	END OF BORING	Almanna E.T		4		-							
		\$											
WELL													
	PTH: DRILLING METHOD		WA1	ER LEVEL MEA	L ASUR	L EMEN	ITS	1		<u> </u>	NOTE:	REFE	R TO
	101 Corrector	DATE TIME	SAMP DEP	LED CASING TH DEPTH	CA	VE-IN PTH	DRILLI FLUID LE	NG VFI	WAT LEVI		THE A		
01-06193.GPJ	-10' Geoprobe	7/14/14	****						Non		SHEE	IS FOI	R AN
		7/24/14							4.7	— I.	EXPLA	NATIO	ON OF
	NG PLETED: 7/14/14									1			GY ON
DR: P		e e									TH	IS LO	G

CITY OF NEW HOPE, MINNESOTA 2016 NORTHWOOD LAKE IMPROVEMENTS FIGURE 2

SUBSURFACE BORING LOG

AET JO	OB NO: 01-06193					LC)G OF	BORING	NO		4 (p	o. 1 of	1)	
PROJE	CT: Northwood Lak	e; New H	lope, MN	「 										
DEPTH IN FEET	SURFACE ELEVATION:	888.2			GEOLOGY	N	мс	SAMPLI TYPE	E REC		1	BORAT	ORY	ESTS
FÉET	MATERIAL I									WC	DEN	LL	PL	%-#200
	FILL, mixture of clayey sa and clayey sand, a little gra brown and brown	ivel, trace r	oots, dark		FILL		M		40					
1 -	FILL, mostly clayey sand,	-					M	0						
2	ORGANIC CLAY, trace r	oots, black	(OH)		SWAMP DEPOSIT		$\left \frac{\sum}{\bar{M}} \right $							
3 -	LEAN CLAY, trace roots,	dark brown	n (CL)		FINE ALLUVIUM									
4							M		v					
5 -	ORGANIC CLAY, trace r	oots, black	(OH)		SWAMP DEPOSIT									
6 -							M							
8 -							IVI			ж.				
9 -														
10 -	LEAN CLAY, gray and br laminations of silty sand (0	own mottle CL)	ed,		FINE ALLUVIUM		M							
	END OF BORING													
DEI	PTH: DRILLING METHOD		F	F	ER LEVEL MEA	<u>т</u>		1				NOTE:	REFE	R TO
0	-10' Geoprobe	DATE	TIME	SAMPI DEPT	LED CASING TH DEPTH	CA' DE	VE-IN PTH	DRILI FLUID I	ING EVEL	WAT LEVI	ER	THE A	TTAC	HED
<u></u>	· · · · · · · · · · · · · · · · · · ·	7/14/14								2.0		SHEET		
	NG											EXPLA TERMIN		
	NG PLETED: 7/14/14										·		IS LO	
\mathbf{P} DR: \mathbf{P}	S LG: Rig: Geoprol	þe												

SUBSURFACE BORING LOG

AET JO	DB NO: 01-06193						LC	G OF	BORING N	10		5 (p	o. 1 of	1)	
PROJE	CT: Northwood Lake	e; New H	ope, MN												
DEPTH IN FEET	SURFACE ELEVATION:	887.2			GE	EOLOGY	N	мс	SAMPLE TYPE	REC		1	BORAT		ESTS
FEET	MATERIAL I								TYPE	IN.	WC	DEN	LL	PL	%-#200
	FILL, mostly clayey sand v trace roots	vith organic	e fines,		FILI	L,		M	0	34					
1 -		1.441	-1 4 1					$ \underline{\nabla} $	Å						
	FILL, mostly clayey sand, a clay, brown, a little light br	a little grav own	el and lean						0						
2 -								M							
	ORGANIC CLAY, trace ro	oots black	(OH)	-	SW	AMP			A						
3 -		Jois, Didek	(011)	<u></u>	DEF	POSIT									
								M	0						
4 -								141							
				3.2.2	-				1						
5 -			*		-										
									Ø						
6 -								M	8						
									8					,	
7 -	LEAN CLAY, gray (CL)				FIN	E LUVIUM			Ø						
8								M	0	32					
0									4						
9 -	CLAYEY SAND WITH C gray (SC)	iRAVEL, t	race roots,		TIL	Ţ			8						
								M	A						
10 -	END OF BORING								<u>A</u>						
	END OF BORING														
<u></u>															
10711															
	PTH: DRILLING METHOD			r		EVEL MEA			1	I			NOTE:	REFE	ER TO
	-10' Geoprobe	DATE	TIME	SAMP DEP	LED TH	CASING DEPTH		VE-IN PTH	DRILL FLUID L	ING EVEL	WAT LEV	ER EL	THE A		
0-10133		7/14/14									1.0		SHEE		
													EXPLA		
	NG PLETED: 7/14/14												TERMI TH	NOLOO IIS LO	
UR: F	PS LG: Rig: Geoprol	be											11		

SUBSURFACE BORING LOG

AET J	OB NO: 01-06193						LO	G OF	BOR	ING N	0		6 (p	. 1 of	1)]
PROJI	CT: Northwood Lake	e; New Ho	ope, MN													
DEPTH IN FEET	SURFACE ELEVATION:	887.4			GEO	DLOGY	N	MC	SAI	MPLE YPE	REC IN.		Г	BORAT		
FEET	MATERIAL I FILL, mostly clayey sand v				FILL					1112		WC	DEN	LL	PL	%-#200
	trace roots, dark brown	-		/				M	A		26½				-	
1 -	FILL, mostly clayey sand, a sand, brown							-₩-								
2 -	ORGANIC CLAY, trace ro (OL)	oots and she	lls, black		SWA DEP(MP DSIT										
3 -								М							-	
4 -	-															
5 -	-					-			N							
6 -	_							M								
7 -	CLAYEY SAND, a little g gray to brown and gray mo around 9' (SC)	ravel, light ttled, a lens	brownish of sand		TILL	,										
8 -	-							M			38					
9 -																
10 -	END OF BORING				-				R							
4																
117811																
01-05193.6PU AEI +CPI +WELL.GOU //28/14																
	EPTH: DRILLING METHOD			WAT	ER LE	VEL MEA	SUR	EMEN	ITS		1	L		NOTE:	REFE	ER TO
PJ AE	0-10' Geoprobe	DATE	TIME	SAMP DEP	LED TH	CASING DEPTH	CA' DE	VE-IN EPTH	FL ^I	ORILLI UID LE	NG EVEL	WAT LEV	ER EL	THE A	TTAC	HED
0193.6	0-10 (300)1000	7/14/14										1.0)	SHEE		
5														EXPLA		
BORI COM	NG PLETED: 7/14/14]]			GY ON
DR:	PS LG: Rig: Geopro	be												TE	IIS LO	UU

SUBSURFACE BORING LOG

AET JO	DB NO: 01-06193						LO	G OF	BORING	NO		7 (p). 1 of	1)	
PROJE	CT: Northwood Lak	e; New H	ope, MN												
DEPTH IN FEET	SURFACE ELEVATION: MATERIAL I	886.8 DESCRIPTIO	N		GE	EOLOGY	N	мс	SAMPI TYPE	E REC IN.	FIELI WC	D & LA	BORAT		ESTS %-#200
·	FILL, mostly clayey sand v	with organic	fines,		FILI			M	4	36					
1 -	trace roots, dark brown FILL, mostly clayey sand, brown	a little grave	el, grayish					M							
2 -												-			
3 -	SAPRIC PEAT, dark brow	vn (PT)			SW/ DEP	AMP POSIT									
4 -								M							
5 -				<u>193</u> 9.83 9.83										-	
6 -				<u></u>	1			М		35					
7 -					-										
8 -	ORGANIC CLAY, black	(OH)						М							
9 -	LEAN CLAY, gray, a lens	s of sand (C	L)		FIN ALI	E LUVIUM		М							
10 -	END OF BORING	10 p													
14			ż												
DI-92193.671 AF1+761+1464LL-9211 1/22114															
DE	PTH: DRILLING METHOD			1	·····	EVEL MEA							NOTE:	REFE	ER TO
τ <u></u>)-10' Geoprobe	DATE	TIME	SAMP DEP	LED TH	CASING DEPTH	CA' DE	VE-IN EPTH	DRII FLUID	LING LEVEL	WAT LEV		THE A		
		7/14/14									1.0		SHEE		
	NG												EXPLA TERMI		
	NG PLETED: 7/14/14													IS LO	
DR: I	PS LG: Rig: Geopro	be		1			1				1				

03/2011

SUBSURFACE BORING LOG

AET JO	DB NO: 01-06193						LC	G OF I	BORING N	0		<mark>8 (</mark> p	. 1 of	1)	
PROJE	CT: Northwood Lake	; New H	ope, MN												
DEPTH	SURFACE ELEVATION:	900.3			GE	OLOGY	N	MC	SAMPLE TYPE	REC IN.	FIELI) & LA	BORAT	ORY	TESTS
DEPTH IN FEET	MATERIAL D							IVIC	TYPE	IN.	WC	DEN	LL	PL	%-#200
	CLAYEY SAND WITH O trace roots, dark brown (SC		FINES,		TOP	SOIL		М		52					
1 -								111	4	52					
1	CLAYEY SAND, a little gr	ravel, brow prown mot	n mottled		TILL										
2 -	to light brownish gray and l laminations of sandy silt an	d sand (SC	;)												
2															
3 -								М	8						
4 -															
,									И						
5	-								A						
									Ø						
6 -	4								И						
						. ^{5.}									
7 -	-								Ø						
								M		551/2					
8 -	-								0						
9	~								0						
									A						
10 -	END OF BORING			////	1				[4						
	END OF BOILING														
	Installed temporary piezom	neter to 9 fe	et below		r 										
	grade														
4							1.								
1178711															
201															
AE1+CP1+WELL.GD1 //28/14	PTH: DRILLING METHOD			WAT	ERLI	EVEL MEA	SUR	EMEN	TS				NOTE	REFI	ER TO
) 101 Coopyoha	DATE	TIME	SAMP DEP	LED TH	CASING DEPTH	CA	VE-IN EPTH	DRILLI FLUID LI	NG EVEL	WAT LEV	ER EL	THE A	ATTAC	CHED
01-06193.GPJ)-10' Geoprobe	7/14/14									Nor		SHEE	TS FO	R AN
0106		7/24/14	· · · · ·								Nor		EXPLA		
BORI COMI	NG PLETED: 7/14/14														GY ON
\vec{H} DR: I		e											Tł	IIS LO	G

SUBSURFACE BORING LOG

PROJECT: Northwood Lake; New Hope, MM DEFTH FEET SURFACE FLEVATION: 891.6 MATERIAL DESCRIPTION GEOLOGY N Mc SAMPLE FIL WC DEN Li PL PL	AET JO	DB NO: 01-06193	-					LO	GOF	BORI	ING N	0		9 (p	. 1 of	1)	
DET_H SURRACE DEVAILOS: COUCY N Mc STATLE RN WC DEN LL PL HEET FILL, mostly clayey sand with organic fines, trace roots, grayish brown FILL N M 42 I	PROJE	CT: Northwood Lake	; New H	ope, MN													
FILL, mostly clayey sand with organic fines, trace roots, grayish brown FILL M 42 I - FILL, mostly clayey sand, a little gravel, trace roots, grayish brown to brown M 42 J - FILL, mostly clayey sand, a little gravel, trace roots, grayish brown to brown M 42 J - FILL, mostly clayey sand, a little gravel, trace roots, grayish brown to brown M 58 G - CLAYEY SAND, a little gravel, gray and brown TILL M N - S S S 6 - CLAYEY SAND, a little gravel, gray and brown TILL M 8 - 9 - M S 9 - IO END OF BORING M IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	DEPTH	SURFACE ELEVATION:	· · · · · · · · · · · · · · · · · · ·			GE	EOLOGY	N	MC	SAN	/PLE	REC	L	r	1		
trace roots, grayish brown M 42 1 - M 42 2 - - M 42 3 - M M 58 4 - M 58 - 6 - M 58 - 7 - M 58 - 8 - M 58 - 10 END OF BORING - M - 10 END OF BORING - - - - 10 END OF BORING - - - - - 10 END OF BORING - - - - - - 10 DEPTH: DRILING METHOD WATER LEVEL MEASUREMENTS NOTE: REFER TO - <td>FËÈT</td> <td></td> <td></td> <td></td> <td></td> <td>TIL</td> <td></td> <td></td> <td></td> <td></td> <td>PE</td> <td>IIN.</td> <td>WC</td> <td>DEN</td> <td>LL</td> <td>PL</td> <td>%-#200</td>	FËÈT					TIL					PE	IIN.	WC	DEN	LL	PL	%-#200
2 - FILL, mostly clayey sand, a little gravel, trace 3 - Foots, grayish brown to brown 4 - M 5 - M 6 - M 7 - CLAYEY SAND, a little gravel, gray and brown motiled (SC) M 8 - M 9 - M 10 END OF BORING 10 END OF BORING		FILL, mostly clayey sand w trace roots, grayish brown	ith organic	tines,		FILI											
2 - FILL, mostly clayey sand, a little gravel, trace 3 - FULL, mostly clayey sand, a little gravel, trace 4 - M 5 - M 6 - M 7 - CLAYEY SAND, a little gravel, gray and brown 8 - M 9 - M 10 END OF BORING	1								м	Ø		12					
FILL, mostly clayey sand, a little gravel, trace M 4 M 5 M 6 M 7 CLAYEY SAND, a little gravel, gray and brown 7 mottled (SC) 8 M 9 M 10 END OF BORING 10 END OF BORING									141			72					
3 - roots, grayish brown to brown 4 - 5 - 6 - 7 - CLAYEY SAND, a little gravel, gray and brown 7 - motiled (SC) 8 - 9 - 10 END OF BORING DEPTH: DRILLING METHOD WATER LEVEL MEASUREMENTS	2 –									Ø							
4 5 5 6 7 CLAYEY SAND, a little gravel, gray and brown 7 TILL 8 M 9 M 10 END OF BORING 10 END OF BORING 10 END OF BORING		FILL, mostly clayey sand, a	a little grav	el, trace													
4 - 5 - 6 - M 7 - CLAYEY SAND, a little gravel, gray and brown mottled (SC) 8 - M 9 - M 10 END OF BORING DEPTH: DRILLING METHOD WATER LEVEL MEASUREMENTS NOTE: REFER TO	3 -	roots, grayish brown to bro	WII							Ø							
6 - M 58 Image: state s	4								M								
6 - M 58 Image: state s										Ø							
6 CLAYEY SAND, a little gravel, gray and brown motiled (SC) 8 M 9 M 10 END OF BORING END OF BORING Image: Clayer of the second sec	5 —									A							
6 CLAYEY SAND, a little gravel, gray and brown motiled (SC) 8 M 9 M 10 END OF BORING END OF BORING Image: Clayer of the second sec									M	Ø		58					
7 - mottled (SC) 8 - 9 - 10 10 END OF BORING 10 END OF BORING 10 END OF BORING	6 -									Ø							
8 - M M A CONTROL STREET TO MATER LEVEL MEASUREMENTS NOTE: REFER TO	_	CLAYEY SAND, a little g	ravel, gray	and brown		TIL	L										
9 - 10 END OF BORING METHOD WATER LEVEL MEASUREMENTS NOTE: REFER TO		motiled (SC)								Ø							
9 - 10 END OF BORING METHOD WATER LEVEL MEASUREMENTS NOTE: REFER TO	8 -																
10 END OF BORING 10 END OF BORING DEPTH: DRILLING METHOD WATER LEVEL MEASUREMENTS NOTE: REFER TO									M	Ø							
DEPTH: DRILLING METHOD WATER LEVEL MEASUREMENTS NOTE: REFER TO	9 —									Ø							
DEPTH: DRILLING METHOD WATER LEVEL MEASUREMENTS NOTE: REFER TO																	
	10 -	END OF BORING				9											
DEPTH: DRILLING METHOD WATER LEVEL MEASUREMENTS NOTE: REFER TO																	
DEPTH: DRILLING METHOD WATER LEVEL MEASUREMENTS NOTE: REFER TO																	
DEPTH: DRILLING METHOD WATER LEVEL MEASUREMENTS NOTE: REFER TO																	
DEPTH: DRILLING METHOD WATER LEVEL MEASUREMENTS NOTE: REFER TO																	
DEPTH: DRILLING METHOD WATER LEVEL MEASUREMENTS NOTE: REFER TO	_																
DEPTH: DRILLING METHOD WATER LEVEL MEASUREMENTS NOTE: REFER TO	- 10711																
DEPTH: DRILLING METHOD WATER LEVEL MEASUREMENTS NOTE: REFER TO																	
DEPTH: DRILLING METHOD WATER LEVEL MEASUREMENTS NOTE: REFER TO																	
	DEI	PTH: DRILLING METHOD						1		-,					NOTE	REFI	ER TO
		-10' Geoprobe	DATE	TIME	SAMP DEP	LED TH	CASING DEPTH	CA' DE	VE-IN PTH	FLI FLI	JID LE	ng EVEL	WAT LEV	ER EL			
0-10' Geoprobe DATE HVL DEPTH DEPTH DEPTH DEPTH FLUID LEVEL LEVEL HLE ATTROUE 36 7/14/14 7/14/14 1 1 1 None SHEETS FOR AN 55 7 1 1 1 1 1 SHEETS FOR AN	0		7/14/14							_			Nor				
BORING TERMINOLOGY ON		۱ <u>G</u>															
BORING COMPLETED: 7/14/14 DR: PS LG: Rig: Geoprobe			he														

03/2011

SUBSURFACE BORING LOG

AET JO	OB NO: 01-06193						LO	G OF	BOR	ING N	0.	1	10 (p. 1 o	f 1)	
PROJE	CT: Northwood Lake	e; New H	ope, MN													
DEPTH IN FEET	SURFACE ELEVATION:	898.2	· · · · · · · · · · · · · · · · · · ·		GE	OLOGY	N	мс	SAI	MPLE YPE	REC			BORAT		r
FÊÈT					FILL					YPE	11N.	WC	DEN	LL	PL	%-#200
	FILL, mostly clayey sand w trace roots, grayish brown	vith organic	: mes,		FILL	<u>.</u>		M			42					
1 -	FILL, mostly clayey sand, a	a little grav	el, trace		-				A							
	roots, light brown and brow	vn, a little d	lark brown						Ø							
2 -																
								м				2 				
3 -								M								
4 -	4								Ø							
									Ø							
5 -									A							
								M	Ø		58					
6 -	CLAYEY SAND, light bro brown mottled, laminations	wnish gray	/ and		TILI				H							
	brown mottled, laminations	s of sand (S	SC)						Ø							
7 -									Ø							
8 -								М								
. 0								141	Ø							
9	-								Ø							
10 -	END OF BORING				¥				R					-		
28/14																
105																
VELL.(
CORP 01-05193.6PJ AE1+CPT+WELL.GD1 /728/14	PTH: DRILLING METHOD			 WAT	 TER LI	EVEL MEA	L SURI	l Emen	TS			1	I	NOTE:	REE	
		DATE	TIME	SAMP DEP		CASING DEPTH	1	VE-IN PTH		RILLI JID LE	NG	WATI LEVI		THE A		
0 133.Gt	-10' Geoprobe	7/14/14		UL1	111							Non		SHEE		
01-06														EXPLA	NATIO	ON OF
BORIN COMP	NG PLETED: 7/14/14												1	FERMI		
DR: P	PS LG: Rig: Geoprot	e												TH	IS LO	G

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

August 13, 2014

Allan Kestler AET 550 Cleveland Avenue North Saint Paul, MN 55114

RE: Project: 01-06193 Northwood Lake:New Ho Pace Project No.: 10275627

Dear Allan Kestler:

Enclosed are the analytical results for sample(s) received by the laboratory on July 29, 2014. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Chn

Chris Bremer for Beth Kadlec beth.kadlec@pacelabs.com Project Manager

Enclosures

REVIEWED By Allan Kestler at 8:22 am, Aug 13, 2014

REPORT OF LABORATORY ANALYSIS

'ace Analvtical www.pacelabs.com

CERTIFICATIONS

Project: 01-06193 Northwood Lake:New Ho Pace Project No.: 10275627

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414 A2LA Certification #: 2926.01 Alabama Certification #40770 Alabama Certification #40770 Alaska Certification #: UST-078 Alaska Certification #MN00064 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace Connecticut Certification #: PH-0256 Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605 Guam Certification #: Pace Georgia Certification #: 959 Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062 Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322

Michigan DEPH Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace Montana Certification #: MT0092 Nebraska Certification #: Pace New York Certification #: 11647 North Carolina Certification #: 530 North Carolina State Public Health #: 27700 North Dakota Certification #: R-036 Ohio EPA #: 4150 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Saipan (CNMI) #:MP0003 South Carolina #:74003001 Texas Certification #: T104704192 Tennessee Certification #: 02818 Utah Certification #: 02818 Utah Certification #: MN000642013-4 Virginia DGS Certification #: 251 Virginia/VELAP Certification #: Pace Washington Certification #: C486 Wisconsin Certification #: 999407970 West Virginia Certification #: 382 West Virginia DHHR #:9952C

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project: Pace Project No	01-06193 Northwood Lake:New Ho .: 10275627			
Lab ID	Sample ID	Matrix	Date Collected	Date Received
10275627001	B-1 1-4ft	Solid	07/29/14 09:10	07/29/14 10:56
10275627002	B-2 1-4ft	Solid	07/29/14 09:15	07/29/14 10:56
10275627003	B-3 1-4ft	Solid	07/29/14 09:20	07/29/14 10:56

REPORT OF LABORATORY ANALYSIS

ace Analytical www.pacelabs.com

SAMPLE ANALYTE COUNT

Project:01-06193 Northwood Lake:New HoPace Project No.:10275627

Lab ID	Sample ID	Method	Analysts	Analytes Reported
10275627001	B-1 1-4ft	EPA 6010	IP	2
		ASTM D2974	JDL	1
		EPA 8270 by SIM	JLR	41
10275627002	B-2 1-4ft	EPA 6010	IP	2
		[\] ASTM D2974	JDL	1
		EPA 8270 by SIM	JLR	41
10275627003	B-3 1-4ft	EPA 6010	IP	2
		ASTM D2974	JDL	1
	,	EPA 8270 by SIM	JLR	41

REPORT OF LABORATORY ANALYSIS

Pace Analytical www.pacelabs.com

Sample: B-1 1-4ft	Lab ID: 102	75627001	Collected: 0	7/20/1	1 00.10	Received: 07	120/14 10:56 M	latrix: Solid	
Results reported on a "dry-weight"		./ 502/001	Collected. 0		- 03.10	received. 07	123/14 10.30 1		
Parameters	Results	Units	Report L	.imit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparatio	n Meth	od: EP	A 3050			
Arsenic	ND m	a/ka		1.3	1	08/07/14 10:05	08/12/14 09:10	7440-38-2	
Copper	25.6 m			0.64	1		08/12/14 09:10		
Dry Weight	Analytical Met	hod: ASTM I	D2974						
Percent Moisture	28.1 %	,		0.10	1		08/06/14 00:00		
8270 MSSV CPAH by SIM	Analytical Met	hod: EPA 82	70 by SIM Pre	eparati	on Met	hod: EPA 3550			
Acenaphthene	ND ug	g/kg		13.9	1	08/04/14 09:09	08/12/14 00:38	83-32-9	
Acenaphthylene	ND ug	g/kg		13.9	1	08/04/14 09:09	08/12/14 00:38	208-96-8	
Anthracene	ND ug	g/kg		13.9	1	08/04/14 09:09	08/12/14 00:38	120-12-7	
Benzo(a)anthracene	ND ug	g/kg		13.9	1	08/04/14 09:09	08/12/14 00:38	56-55-3	
Benzo(a)pyrene	ND ug	g/kg		13.9	1	08/04/14 09:09	08/12/14 00:38	50-32-8	
Benzo(e)pyrene	ND ug			13.9	1	08/04/14 09:09	08/12/14 00:38	192-97-2	
Benzo(g,h,i)perylene	ND ug			13.9	1	08/04/14 09:09	08/12/14 00:38	191-24-2	
Benzofluoranthenes (Total)	ND ug			41.7	1	08/04/14 09:09	08/12/14 00:38		
Carbazole	ND u			13.9	1		08/12/14 00:38	86-74-8	
2-Chloronaphthalene	ND u			13.9	1		08/12/14 00:38		
Chrysene	ND ug			13.9	1		08/12/14 00:38		
Dibenz(a,h)acridine	ND u			13.9	1	6	08/12/14 00:38		
Dibenz(a,h)anthracene	ND u			13.9	1		08/12/14 00:38		
Dibenz(a,j)acridine	ND u			13.9	1		08/12/14 00:38		L2
Dibenzo(a,e)pyrene	ND u			13.9	1		08/12/14 00:38		
Dibenzo(a,h)pyrene	ND u			13.9	1		08/12/14 00:38		
Dibenzo(a,i)pyrene	ND u			13.9	1		08/12/14 00:38		
Dibenzo(a,l)pyrene	ND u			13.9	1		08/12/14 00:38		L2
7H-Dibenzo(c,g)carbazole	ND u			13.9	1		08/12/14 00:38		
Dibenzofuran	ND u			13.9	1		08/12/14 00:38		
	ND u			13.9	1		08/12/14 00:38		
7,12-Dimethylbenz(a)anthracene 1,6-Dinitropyrene	ND u			139	1		08/12/14 00:38		L2
	ND u			139	1		08/12/14 00:38		L2 L2
1,8-Dinitropyrene					1		08/12/14 00:38		LZ
Fluoranthene	ND u			13.9			08/12/14 00:38		
	ND ug			13.9	1 1		08/12/14 00:38		
Indeno(1,2,3-cd)pyrene	ND ug			13.9					
3-Methylcholanthrene	ND ug			13.9	1		08/12/14 00:38		
5-Methylchrysene	ND u			13.9	1		08/12/14 00:38		
1-Methylnaphthalene	ND u			13.9	1		08/12/14 00:38		
2-Methylnaphthalene	ND u			13.9	1		08/12/14 00:38		
Naphthalene	ND u			13.9	1		08/12/14 00:38		
5-Nitroacenaphthene	ND ug			13.9	1		08/12/14 00:38		
6-Nitrochrysene	ND u			13.9	1		08/12/14 00:38		
2-Nitrofluorene	ND u			13.9	1		08/12/14 00:38		
1-Nitropyrene	ND u			13.9	1		08/12/14 00:38		
4-Nitropyrene	ND u			13.9	1		08/12/14 00:38		
Perylene	ND u			13.9	1		08/12/14 00:38		
Phenanthrene	ND u	a/ka		13.9	1	08/04/14 09:09	08/12/14 00:38	85-01-8	

REPORT OF LABORATORY ANALYSIS

ace Analytical www.pacelabs.com

Project: 01-06193 Pace Project No.: 10275627	Northwood Lake:New Ho						
Sample: B-1 1-4ft	Lab ID: 10275627	01 Collected: 07/29/	14 09:10	Received: 0	7/29/14 10:56	Matrix: Solid	
Results reported on a "dry-we	eight" basis						
Parameters	Results Ur	its Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV CPAH by SIM	Analytical Method: El	A 8270 by SIM Preparat	tion Meth	od: EPA 3550			
Pyrene <i>Surrogates</i>	ND ug/kg	13.9	1	08/04/14 09:09	9 08/12/14 00:3	8 129-00-0	
2-Fluorobiphenyl (S)	78 %.	33-125	1	08/04/14 09:09	9 08/12/14 00:3	8 321-60-8	
Terphenyl-d14 (S)	84 %.	35-125	1	08/04/14 09:09	08/12/14 00:3	8 1718-51-0	

REPORT OF LABORATORY ANALYSIS

ace Analytical ` www.pacelabs.com

Project:01-06193 Northwood Lake:New HoPace Project No.:10275627

Sample: B-2 1-4ft	Lab ID: 102	75627002	Collected: 07/29/	14 09:15	Received: 07	7/29/14 10:56 N	latrix: Solid	
Results reported on a "dry-weight"	" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Met	hod: EP/	A 3050			_
Arsenic	1.4 m	g/kg	1.1	1	08/07/14 10:05	08/12/14 09:38	7440-38-2	
Copper	10.5 m	g/kg	0.53	1	08/07/14 10:05	08/12/14 09:38	7440-50-8	
Dry Weight	Analytical Met	hod: ASTM [02974					
Percent Moisture	19.2 %		0.10	1		08/06/14 00:00		
8270 MSSV CPAH by SIM	Analytical Met	hod: EPA 82	70 by SIM Preparat	ion Meth	nod: EPA 3550			
Acenaphthene	ND ug	j/kg	12.3	1	08/04/14 09:09	08/12/14 01:08	83-32-9	
Acenaphthylene	ND ug	j/kg	12.3	1	08/04/14 09:09	08/12/14 01:08	208-96-8	
Anthracene	33.0 ug	g/kg	12.3	1	08/04/14 09:09	08/12/14 01:08	120-12-7	
Benzo(a)anthracene	72.1 ug		12.3	1	08/04/14 09:09	08/12/14 01:08	56-55-3	
Benzo(a)pyrene	71.4 ug		12.3	1		08/12/14 01:08		
Benzo(e)pyrene	42.0 up		12.3	1		08/12/14 01:08		
Benzo(g,h,i)perylene	22.2 ug		12.3	1		08/12/14 01:08		
Benzofluoranthenes (Total)	130 ug		37.0	1		08/12/14 01:08	101 24 2	
Carbazole	ND ug		12.3	1		08/12/14 01:08	86-74-8	
		-	12.3	1		08/12/14 01:08		
2-Chloronaphthalene	ND ug							
Chrysene	74.0 ug		12.3	1		08/12/14 01:08		
Dibenz(a,h)acridine	ND ug		12.3	1		08/12/14 01:08		
Dibenz(a,h)anthracene	ND ug		12.3	1		08/12/14 01:08		
Dibenz(a,j)acridine	ND ug		12.3	1		08/12/14 01:08		L2
Dibenzo(a,e)pyrene	ND ug		12.3	1		08/12/14 01:08		
Dibenzo(a,h)pyrene	ND ug		12.3	1	08/04/14 09:09	08/12/14 01:08	189-64-0	
Dibenzo(a,i)pyrene	ND ug	g/kg	12.3	1	08/04/14 09:09	08/12/14 01:08	189-55-9	
Dibenzo(a,l)pyrene	ND ug	g/kg	12.3	1	08/04/14 09:09	08/12/14 01:08	191-30-0	L2
7H-Dibenzo(c,g)carbazole	ND ug]/kg	12.3	1	08/04/14 09:09	08/12/14 01:08	194-59-2	
Dibenzofuran	ND ug	j/kg	12.3	1	08/04/14 09:09	08/12/14 01:08	132-64-9	
7,12-Dimethylbenz(a)anthracene	ND ug	j/kg	12.3	1	08/04/14 09:09	08/12/14 01:08	57-97-6	
1,6-Dinitropyrene	ND ug		123	1	08/04/14 09:09	08/12/14 01:08	42397-64-8	L2
1,8-Dinitropyrene	ND ug		123	1	08/04/14 09:09	08/12/14 01:08	42397-65-9	L2
Fluoranthene	219 ug		12.3	1	08/04/14 09:09	08/12/14 01:08	206-44-0	
Fluorene	ND ug		12.3	1		08/12/14 01:08		
Indeno(1,2,3-cd)pyrene	21.0 ug		12.3	1		08/12/14 01:08		
3-Methylcholanthrene	ND ug		12.3	1		08/12/14 01:08		
5-Methylchrysene	ND ug		12.3	1		08/12/14 01:08		
	ND ug		12.3	1		08/12/14 01:08		
1-Methylnaphthalene				1				
2-Methylnaphthalene	ND ug		12.3	1		08/12/14 01:08		
Naphthalene	ND ug		12.3	1		08/12/14 01:08		
5-Nitroacenaphthene	ND ug		12.3	1		08/12/14 01:08		
6-Nitrochrysene	ND ug		12.3	1		08/12/14 01:08		
2-Nitrofluorene	ND ug	- -	12.3	1		08/12/14 01:08		
1-Nitropyrene	ND ug		12.3	1		08/12/14 01:08		
4-Nitropyrene	ND ug		12.3	1		08/12/14 01:08		
Perylene	20.5 ug	j/kg	12.3	1		08/12/14 01:08		
Phenanthrene	134 ug	ı/ka	12.3	1	08/04/14 09:09	08/12/14 01:08	85-01-8	

REPORT OF LABORATORY ANALYSIS

ace Analytical www.pacelabs.com

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

ANALYTICAL RESULTS

Project: 01-06193 Northwood Lake:New Ho 10275627

Pace Project No.:

Sample: B-2 1-4ft	Lab ID: 102	275627002	Collected: 07/29/1	4 09:15	Received: 07	7/29/14 10:56 N	Aatrix: Solid	
Results reported on a "dry-weig	ht" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV CPAH by SIM	Analytical Met	hod: EPA 82	270 by SIM Preparat	ion Meth	nod: EPA 3550			
Pyrene Surrogates	173 uş	g/kg	12.3	1	08/04/14 09:09	08/12/14 01:08	129-00-0	
2-Fluorobiphenyl (S)	80 %	ı.	33-125	1	08/04/14 09:09	08/12/14 01:08	321-60-8	
Terphenyl-d14 (S)	83 %)	35-125	1	08/04/14 09:09	08/12/14 01:08	1718-51-0	

REPORT OF LABORATORY ANALYSIS

•

ace Analytical www.pacelabs.com

Project: 01-06193 Northwood Lake:New Ho

Pace Project No.: 10275627

Sample: B-3 1-4ft	Lab ID: 102	75627003	Collected: 07/29/1	4 09:20	Received: 07	/29/14 10:56 N	latrix: Solid			
Results reported on a "dry-weight"	' basis									
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
6010 MET ICP	Analytical Meth	Analytical Method: EPA 6010 Preparation Method: EPA 3050								
Arsenic	ND mg	g/kg	1.1	1	08/07/14 10:05	08/12/14 09:44	7440-38-2			
Соррег	18.1 mg	g/kg	0.53	1	08/07/14 10:05	08/12/14 09:44	7440-50-8			
Dry Weight	Analytical Meth	nod: ASTM I	02974							
Percent Moisture	22.1 %		0.10	1		08/06/14 00:00				
8270 MSSV CPAH by SIM	Analytical Mether	nod: EPA 82	70 by SIM Preparat	ion Meth	od: EPA 3550					
Acenaphthene	ND ug	/kg	12.8	1	08/04/14 09:09	08/12/14 01:37	83-32-9			
Acenaphthylene	ND ug	/kg	12.8	1	08/04/14 09:09	08/12/14 01:37	208-96-8			
Anthracene	ND ug	/kg	12.8	1	08/04/14 09:09	08/12/14 01:37	120-12-7			
Benzo(a)anthracene	ND ug	/kg	12.8	1	08/04/14 09:09	08/12/14 01:37	56-55-3			
Benzo(a)pyrene	ND ug	/kg	12.8	1	08/04/14 09:09	08/12/14 01:37	50-32-8			
Benzo(e)pyrene	ND ug	/kg	12.8	1	08/04/14 09:09	08/12/14 01:37	192-97-2			
Benzo(g,h,i)perylene	ND ug	/kg	12.8	1	08/04/14 09:09	08/12/14 01:37	191-24-2			
Benzofluoranthenes (Total)	ND ug	/kg	38.5	1	08/04/14 09:09	08/12/14 01:37				
Carbazole	ND ug	/kg	12.8	1	08/04/14 09:09	08/12/14 01:37	86-74-8			
2-Chloronaphthalene	ND ug	/kg	12.8	1	08/04/14 09:09	08/12/14 01:37	91-58-7			
Chrysene	ND ug		12.8	1	08/04/14 09:09	08/12/14 01:37	218-01-9			
Dibenz(a,h)acridine	ND ug	/kg	12.8	1	08/04/14 09:09	08/12/14 01:37	226-36-8			
Dibenz(a,h)anthracene	ND ug	/kg	12.8	1	08/04/14 09:09	08/12/14 01:37	53-70-3			
Dibenz(a,j)acridine	ND ug	/kg	12.8	1	08/04/14 09:09	08/12/14 01:37	224-42-0	L2		
Dibenzo(a,e)pyrene	ND ug	/kg	12.8	1	08/04/14 09:09	08/12/14 01:37	192-65-4			
Dibenzo(a,h)pyrene	ND ug	/kg	12.8	1	08/04/14 09:09	08/12/14 01:37	189-64-0			
Dibenzo(a,i)pyrene	ND ug	/kg	12.8	1	08/04/14 09:09	08/12/14 01:37	189-55-9			
Dibenzo(a,l)pyrene	ND ug	ı/kg	12.8	1	08/04/14 09:09	08/12/14 01:37	191-30-0	L2		
7H-Dibenzo(c,g)carbazole	ND ug	-	12.8	1	08/04/14 09:09	08/12/14 01:37	194-59-2			
Dibenzofuran	ND ug	-	12.8	1	08/04/14 09:09	08/12/14 01:37	132-64-9			
7,12-Dimethylbenz(a)anthracene	ND ug	i/kg	12.8	1	08/04/14 09:09	08/12/14 01:37	57-97-6			
,6-Dinitropyrene	ND ug	-	128	1	08/04/14 09:09	08/12/14 01:37	42397-64-8	L2		
1,8-Dinitropyrene	ND ug	ı/kg	128	· 1	08/04/14 09:09	08/12/14 01:37	42397-65-9	L2		
Fluoranthene	ND ug	ı/kg	12.8	1	08/04/14 09:09	08/12/14 01:37	206-44-0			
Fluorene	ND ug	-	12.8	1	08/04/14 09:09	08/12/14 01:37	86-73-7			
ndeno(1,2,3-cd)pyrene	ND ug	/kg	12.8	1	08/04/14 09:09	08/12/14 01:37	193-39-5			
3-Methylcholanthrene	ND ug	-	12.8	1	08/04/14 09:09	08/12/14 01:37	56-49-5			
5-Methylchrysene	ND ug		12.8	1	08/04/14 09:09	08/12/14 01:37	3697-24-3			
1-Methylnaphthalene	ND ug	-	12.8	1	08/04/14 09:09	08/12/14 01:37	90-12-0			
2-Methylnaphthalene	ND ug		12.8	1	08/04/14 09:09	08/12/14 01:37	91-57-6			
Naphthalene	ND ug	-	12.8	1	08/04/14 09:09	08/12/14 01:37	91-20-3			
5-Nitroacenaphthene	ND ug	Ū	12.8	1		08/12/14 01:37				
6-Nitrochrysene	ND ug		12.8	1		08/12/14 01:37				
2-Nitrofluorene	ND ug	-	12.8	1		08/12/14 01:37				
1-Nitropyrene	ND ug	-	12.8	1		08/12/14 01:37				
4-Nitropyrene	ND ug	-	12.8	1		08/12/14 01:37				
Perylene	ND ug		12.8	1		08/12/14 01:37				
Phenanthrene	ND ug	-	12.8	1		08/12/14 01:37				

REPORT OF LABORATORY ANALYSIS

∛ace Analytical www.pacelabs.com

ANALYTICAL RESULTS

Project: 01-06193 Northwood Lake:New Ho

Pace Project No.: 10275627

Sample: B-3 1-4ft	Lab ID: 102	75627003	Collected: 07/29/1	4 09:20	Received: 07	/29/14 10:56	Matrix: Solid	
Results reported on a "dry-weig	ht" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV CPAH by SIM	Analytical Met	hod: EPA 827	'0 by SIM Preparati	on Meth	od: EPA 3550			
Pyrene Surrogates	ND uç	ǥ∕kg	12.8	1	08/04/14 09:09	08/12/14 01:37	129-00-0	
2-Fluorobiphenyl (S)	77 %		33-125	1	08/04/14 09:09	08/12/14 01:37	321-60-8	
Terphenyl-d14 (S)	80 %		35-125	1	08/04/14 09:09	08/12/14 01:37	1718-51-0	

REPORT OF LABORATORY ANALYSIS

ace Analytical www.pacelabs.com

Project: Pace Project No.:	01-06193 Northw 10275627	ood Lake:N	lew Ho										
QC Batch:	MPRP/48078				s Method:		PA 6010						
QC Batch Method:	EPA 3050			Analysi	s Descrip	tion: 6	010 MET						
Associated Lab Sar	nples: 1027562	7001, 1027	5627002,	102756270	003								
METHOD BLANK:	1754258			N	latrix: Sol	id							
Associated Lab Sar	nples: 1027562	7001, 1027	5627002,	102756270	003								
				Blank	R	eporting							
Parar	neter	Un	its	Result		Limit	Analyz	ed	Qualifiers				
Arsenic		mg/kg			ND	0.97	08/12/14						
Copper	(mg/kg			ND	0.49	08/12/14	09:01					
	· · · ·												
LABORATORY COI		1754259											
		1101200		Spike	LCS	5	LCS	% Rec	:				
Parar	neter	Un	its	Conc.	Resu	ılt	% Rec	Limits	Qı	ualifiers			
Arsenic	······································	mg/kg		48.1		45.6	95	80	-120		-		
Copper		mg/kg		48.1		48.2	100	80	-120				
	ATRIX SPIKE DU	PLICATE:	175426	60		1754261							
WAIKIN OF INE & IV				MS	MSD				4				
WAINA SPIKE & I				IVIO	MOD								
		10275	627001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parame	ter		627001 Result			MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD		Qual
	ter	Units I		Spike	Spike		Result				RPD 15	RPD	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:		ood Lake:New Ho							
Pace Project No.:	10275627								
QC Batch:	MPRP/48064		Analysis Meth	od:	ASTM D2974	·			
QC Batch Method:	ASTM D2974		Analysis Desc	ription:	Dry Weight/Pei	rcent Moisture			~
Associated Lab Sat	mples: 1027562	7001							
SAMPLE DUPLICA	TE: 1753801								*= ·
			10275976024	Dup		Max			
Para	neter	Units	Result	Result	RPD	RPD		Qualifiers	
Percent Moisture		%	10.3	12	.5	19	30		
SAMPLE DUPLICA	TE: 1753802								
			10275627001	Dup		Max			
Para	meter	Units	Result	Result	RPD	RPD		Qualifiers	
Percent Moisture		%	28.1	30	.3	8	30		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 08/13/2014 05:51 AM

· · ·] - · · ·	01-06193 Northwo 10275627	od Lake:New Ho						
QC Batch:	MPRP/48065		Analysis Meth	iod:	ASTM D2974			
QC Batch Method:	ASTM D2974		Analysis Desc	ription:	Dry Weight/Percer	nt Moisture		
Associated Lab Sam	ples: 102756270	002, 1027562700	3					
SAMPLE DUPLICAT	E: 1753896							
			50101541007	Dup		Max		
Parame	eter	Units	Result	Result	RPD	RPD	C	Qualifiers
Percent Moisture		%	17.2	17.	3 0		30	
SAMPLE DUPLICAT	E: 1753897							
			10275766004	Dup		Max		
Param	eter	Units	Result	Result	RPD	RPD	C	Qualifiers
Percent Moisture		%	4.8	5.	1 6		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Pace Analytical www.pacelabs.com

QC Batch: OEXT/2	25022	Analysis Meth		A 8270 by SIM		
		-		•		
QC Batch Method: EPA 35		Analysis Des	cription: 82	70 CPAH by SIM N	1557	
Associated Lab Samples: 1	0275627001, 10275627002,	10275627003				
METHOD BLANK: 1751132		Matrix:	Solid			
Associated Lab Samples: 1	0275627001, 10275627002,	10275627003				
		Blank	Reporting			
Parameter	Units	Result	Limit	Analyzed	Qualifiers	
1,6-Dinitropyrene	ug/kg	ND	100	08/11/14 20:41		
1,8-Dinitropyrene	ug/kg	ND	100	08/11/14 20:41		
1-Methylnaphthalene	ug/kg	ND	10.0	08/11/14 20:41		
1-Nitropyrene	ug/kg	ND	10.0	08/11/14 20:41		
2-Chloronaphthalene	ug/kg	ND	10.0	08/11/14 20:41		
2-Methylnaphthalene	ug/kg	ND	10.0	08/11/14 20:41		
2-Nitrofluorene	ug/kg	ND	10.0	08/11/14 20:41		
3-Methylcholanthrene	ug/kg	ND	10.0	08/11/14 20:41		
4-Nitropyrene	ug/kg	ND	10.0	08/11/14 20:41		
5-Methylchrysene	ug/kg	ND	10.0	08/11/14 20:41		
5-Nitroacenaphthene	ug/kg	ND	10.0	08/11/14 20:41		
5-Nitrochrysene	ug/kg	ND	10.0	08/11/14 20:41		
7,12-Dimethylbenz(a)anthrace		ND	10.0	08/11/14 20:41		
7H-Dibenzo(c,g)carbazole	ug/kg	ND	10.0	08/11/14 20:41		
Acenaphthene	ug/kg	ND	10.0	08/11/14 20:41		
Acenaphthylene	ug/kg	ND	10.0	08/11/14 20:41		
Anthracene	ug/kg	ND	10.0	08/11/14 20:41		
Benzo(a)anthracene	ug/kg	ND	10.0	08/11/14 20:41		
Benzo(a)pyrene	ug/kg	ND	10.0	08/11/14 20:41		
Benzo(e)pyrene	ug/kg	ND	10.0	08/11/14 20:41		
		ND	10.0	08/11/14 20:41		
Benzo(g,h,i)perylene	ug/kg	ND	30.0	08/11/14 20:41		
Benzofluoranthenes (Total)	ug/kg	ND	30.0 10.0	08/11/14 20:41		
Carbazole	ug/kg	ND	10.0	08/11/14 20:41		
Chrysene Dihonz(a b)acridina	ug/kg	ND	10.0	08/11/14 20:41		
Dibenz(a,h)acridine	ug/kg		10.0	08/11/14 20:41		
Dibenz(a,h)anthracene	ug/kg			08/11/14 20:41		
Dibenz(a,j)acridine	ug/kg	ND ND	10.0	08/11/14 20:41		
Dibenzo(a,e)pyrene	ug/kg		10.0			
Dibenzo(a,h)pyrene	ug/kg	ND	10.0	08/11/14 20:41		
Dibenzo(a,i)pyrene	ug/kg	ND	10.0	08/11/14 20:41		
Dibenzo(a,l)pyrene	ug/kg	ND	10.0	08/11/14 20:41		
Dibenzofuran	ug/kg	ND	10.0	08/11/14 20:41		
Fluoranthene	ug/kg	ND	10.0	08/11/14 20:41		
Fluorene	ug/kg	ND	10.0	08/11/14 20:41		
ndeno(1,2,3-cd)pyrene	ug/kg	ND	10.0	08/11/14 20:41		
Naphthalene	ug/kg	ND	10.0	08/11/14 20:41		
Perylene	ug/kg	ND	10.0	08/11/14 20:41		
Phenanthrene	ug/kg	ND	10.0	08/11/14 20:41		
Pyrene	ug/kg	ND	10.0	08/11/14 20:41		
2-Fluorobiphenyl (S)	%.	76	33-125	08/11/14 20:41		
Terphenyl-d14 (S)	%.	102	35-125	08/11/14 20:41		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

.

ace Analytical www.pacelabs.com

Project: 01-06193 Northwood Lake:New Ho 10275627

Pace Project No .:

LABORATORY CONTROL SAMPLE: 1751133

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
6-Dinitropyrene	ug/kg	100	ND	0	30-125	
,8-Dinitropyrene	ug/kg	100	ND	0	30-125	
-Methylnaphthalene	ug/kg	100	46.4	46	46-125	
Nitropyrene	ug/kg	100	66.2	66	31-125	
Chloronaphthalene	ug/kg	100	48.2	48	32-125	
/lethylnaphthalene	ug/kg	100	46.5	47	46-125	
itrofluorene	ug/kg	100	78.1	78	58-125	
lethylcholanthrene	ug/kg	100	57.1	57	30-125	
tropyrene	ug/kg	100	70.2	70	44-125	
ethylchrysene	ug/kg	100	79.1	79	68-125	
troacenaphthene	ug/kg	100	77.5	77	58-125	
itrochrysene	ug/kg	100	62.8	63	31-125	
Dimethylbenz(a)anthracene	ug/kg	100	73.0	73	30-150	SS
Dibenzo(c,g)carbazole	ug/kg	100	75.6	76	56-125	
naphthene	ug/kg	100	51.0	51	45-125	
naphthylene	ug/kg	100	49.9	50	45-125	
Iracene	ug/kg	100	71.3	71	54-125	
zo(a)anthracene	ug/kg	100	73.2	73	57-125	
co(a)pyrene	ug/kg	100	72.9	73	57-125	
o(e)pyrene	ug/kg	100	76.3	76	60-125	
o(g,h,i)perylene	ug/kg	100	73.6	74	57-128	
ofluoranthenes (Total)	ug/kg	300	240	80	64-125	
azole	ug/kg	100	76.9	77	58-125	
sene	ug/kg	100	74.8	75	59-125	
iz(a,h)acridine	ug/kg	100	75.5	76	64-125	
z(a,h)anthracene	ug/kg	100	78.1	78	59-125	
iz(a,j)acridine	ug/kg	100	21.1	21	30-133	LO
zo(a,e)pyrene	ug/kg	100	72.7	73	52-125	
nzo(a,h)pyrene	ug/kg	100	78.3	78	46-133	
nzo(a,i)pyrene	ug/kg	100	63.5	64	39-125	
enzo(a,l)pyrene	ug/kg	100	29.1	29	30-125	LO
enzofuran	ug/kg	100	54.7	55	55-125	
ranthene	ug/kg	100	78.8	79	60-129	
rene	ug/kg	100	62.0	62	55-125	
no(1,2,3-cd)pyrene	ug/kg	100	77.3	77	57-126	
hthalene	ug/kg	100	45.7	46	39-125	
lene	ug/kg	100	70.9	71	66-125	
hanthrene	ug/kg	100	72.1	72	56-125	
ene	ug/kg	100	77.2	77	60-125	
uorobiphenyl (S)	%.			55	33-125	
phenyl-d14 (S)	%.			88	35-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 01-06193 Northwood Lake:New Ho

Pace Project No.: 10275627

MATRIX SPIKE & MATRIX SP	IKE DUPLICAT	E: 17511	34		1751135							
			MS	MSD								
Parameter	10: Units	276106001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1,6-Dinitropyrene	ug/kg	ND	115	115	ND	ND		0	30-125			MO
1,8-Dinitropyrene	ug/kg	ND	115	115	ND	ND	0	0	30-125			MO
1-Methylnaphthalene	ug/kg	ND	115	115	78.4	82.4	68	71	47-125	5	30	WIO
1-Nitropyrene	ug/kg	ND	115	115	49.3	42.4	43	37	58-125	15		M1
2-Chioronaphthalene	ug/kg	ND	115	115	82.8	82.4	72	71	31-125	1	30	101 1
2-Methylnaphthalene	ug/kg	ND	115	115	78.1	82.4	68	71	30-125	5	30	
2-Nitrofluorene	ug/kg	ND	115	115	82.6	77.8		67	30-123	6	30	
		ND	115	115	90.5	87.4	72	76	30-152	3	30	
3-Methylcholanthrene	ug/kg	ND	115	115	90.3 55.2	47.7	78 48	41	30-150	15	30	
4-Nitropyrene	ug/kg	ND	115	115	95.5	93.5	46 76	74	30-127	2	30	
5-Methylchrysene	ug/kg					93.5 91.1	76 80	74	30-150	2	30	
5-Nitroacenaphthene	ug/kg	ND	115	115	91.7				30-150		30	
6-Nitrochrysene 7,12-	ug/kg	ND	115	115	40.2	37.8	35	33		6		00
Dimethylbenz(a)anthracene	ug/kg	ND	115	115	80.6	87.3	70	76	30-150	8	30	SS
7H-Dibenzo(c,g)carbazole	ug/kg	ND	115	115	76.1	62.2	66	54	30-140	20	30	
Acenaphthene	ug/kg	40.0	115	115	87.8	90.9	41	44	30-150	- 3	30	
Acenaphthylene	ug/kg	13.9	115	115	92.4	100	68	75	30-150	8	30	
Anthracene	ug/kg	127	115	115	106	121	-18	-6	30-150	13		M1
Benzo(a)anthracene	ug/kg	180	115	115	134	176	-40	-3	30-150	27		M1
Benzo(a)pyrene	ug/kg	161	115	115	142	184	-17	20	30-150	26		M1
Benzo(e)pyrene	ug/kg	90.2	115	115	142	104	26	49	30-150	20		M1
Benzo(g,h,i)perylene	ug/kg	69.7	115	115	94.3	91.1	21	43 19	30-150	20		M1
Benzofluoranthenes (Total)	ug/kg	283	346	346	374	464	26	52	30-150	21		M1
Carbazole	ug/kg	33.9	115	115	96.5	97.0	20 54	55	30-150	21	30	IVI I
	ug/kg	184	115	115	136	174	-42	-9	30-150	25		M1
Chrysene Dibonz/a b)ocridina	ug/kg	ND	115	115	88.2	79.0	-42	-9 68	30-150	11	30	
Dibenz(a,h)acridine Dibenz(a,h)anthracene	ug/kg	22.6	115	115	85.2	79.0	54	47		10	30	
		22.0 ND	115	115	76.9	66.0	54 67	47 57	30-130	15	30	
Dibenz(a,j)acridine	ug/kg	25.9	115	115	70.9 59.7	47.6	29	57 19	30-141	22		M1
Dibenzo(a,e)pyrene	ug/kg	25.9 ND		115	45.2	47.0 30.5	29 31	19	30-150	39		M1,R1
Dibenzo(a,h)pyrene	ug/kg	ND	115 115	115	45.2 37.5	30.5 26.0	33	23	30-150	39 36		M1,R1
Dibenzo(a,i)pyrene	ug/kg					26.0 24.0	30 30	23 21		35		
Dibenzo(a,l)pyrene	ug/kg	ND	115	115	34.2				30-127		30	M0,R1
Dibenzofuran	ug/kg	20.6	115	115	88.7	91.5	59	61	30-150	3		
Fluoranthene	ug/kg	517	115	115	198	294	-277	-194	30-150	39		M1,R1
Fluorene	ug/kg	50.6	115	115	94.3	100	38	43	30-150	6	30	
Indeno(1,2,3-cd)pyrene	ug/kg	64.0	115	115	99.6	99.7	31	31	30-150	0	30	
Naphthalene	ug/kg	ND	115	115	72.5	77.2	63	67	30-150	6	30	
Perylene	ug/kg	41.1	115	115	105	116	55	65	30-150	10	30	
Phenanthrene	ug/kg	430	115	115	131	172	-260	-224	30-150	27		M1
Pyrene	ug/kg	369	115	115	158	224	-182	-125	30-150	35	30	M1,R1
2-Fluorobiphenyl (S)	%.						83	83	33-125			
Terphenyl-d14 (S)	%.						83	81	35-125			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALIFIERS

Project:	01-06193 Northwood Lake:New Ho
Pace Project No.:	10275627

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

BATCH QUALIFIERS

Batch: MSSV/10938

[1] 1,6-dinitropyrene and 1,8-dinitropyrene are outside of the method control limits in the initial calibration. The result is estimated.

ANALYTE QUALIFIERS

- L0 Analyte recovery in the laboratory control sample (LCS) was outside QC limits.
- L2 Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results may be biased low.
- M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- R1 RPD value was outside control limits.
- SS This analyte did not meet the secondary source verification criteria for the initial calibration. The reported result should be considered an estimated value.

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:01-06193 Northwood Lake:New HoPace Project No.:10275627

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10275627001	B-1 1-4ft	EPA 3050	MPRP/48078	EPA 6010	ICP/20469
10275627002	B-2 1-4ft	EPA 3050	MPRP/48078	EPA 6010	ICP/20469
10275627003	B-3 1-4ft	EPA 3050	MPRP/48078	EPA 6010	ICP/20469
10275627001	B-1 1-4ft	ASTM D2974	MPRP/48064		
10275627002	B-2 1-4ft	ASTM D2974	MPRP/48065		
10275627003	B-3 1-4ft	ASTM D2974	MPRP/48065		
10275627001	B-1 1-4ft	EPA 3550	OEXT/25922	EPA 8270 by SIM	MSSV/10938
10275627002	B-2 1-4ft	EPA 3550	OEXT/25922	EPA 8270 by SIM	MSSV/10938
10275627003	B-3 1-4ft	EPA 3550	OEXT/25922	EPA 8270 by SIM	MSSV/10938
				EPA 8270 by SIM	

REPORT OF LABORATORY ANALYSIS

NOTE DATE NEEDED BY: REQUESTED TURNAROUND TIME: SAMPLER SIGNATURE SAMPLED BY (PRINT) SEND, REPORT TO a Kestler & a menostest com AET PROJECT MANAGER PROJECT NAMELOCATION North wood Lake: New Hope AET PROJECT NUMBER 01-06193 ITEM# Q. ない ငှ ပိ B-/ ENGINEERING, Testing, Inc. SAMPLE DESCRIPTION AMERICAN Lester 447 もち 1-4 1-4 600 Brekke Paul Shoenina NORMAL DATE 014/150/ St. Paul Office 550 Cleveland Ave. N. St. Paul, MN 55114 651-659-9001 651-659-1379 (fax) TIME 8 5:6 RUSH SAMPLE TYPE B P P Kestle, NUMBER \sim NO. OF CONTAINERS 5 3 2 5 UNPRESERVED OTHER PRESERVATIVES MeOH **RELINQUISHED BY/AFFILIATION** HCL Jan H₂SO₄ HNO₃ FIELD FILTERED Y/N EPAHS (Carcinogen list ANALYSIS ADDRESS: PHONE: ACCEPTED BY/AFFILIATION 2022 Verce 110-1221527 DATE h1/2/1.d PAGE 17250 8 REMARKS 000 2 പ 1057 TIME ရှ Page 19 of 20

Pace Analytical®	Sample Condit	iment Na ion Upon cument N I-L-213-re	Receipt	Form		hent Revised: 28F Page 1 of 1 Issuing Authority Minnesota Quality	· · · · · · · · · · · · · · · · · · ·	
ample Condition Client Name: Upon Receipt Amptican English burier: Image: Client Name: Image: Client Name: Client	USPS	a calena	oject #: HNS nt		#:1(627	027562	27	
Custody Seal on Cooler/Box Present?	ANO Se	als Intact	? 🗍 Y	es Dino	Option	al: Proj. Due Da	ate: Proj.	Name:
Packing Material: Bubble Wrap Bubble	Bags None	Oth	er:			Temp Blank	Yes	No
hermom, Used: B88A9130516413				Blue	 □_None	Samples on ice	cooling proc	ess has begu
B88A913	p Corrected (°C):	3.U	5	Bio	ological Tiss	ue Frozen?	Yes No	BIN/A 739
Chain of Custody Present?	Yes	No		1.				
Chain of Custody Filled Out?	Xes	□No		2.			· .	
Chain of Custody Relinguished?	Kes	□No		3.		· .		
Sampler Name and/or Signature on COC?	Yes	[]No		4.			<u>.</u>	
Samples Arrived within Hold Time?	Dies	No		5.				
Short Hold Time Analysis (<72 hr)?	Yes.	No		6.				
Rush Turn Around Time Requested?	Yes	- ANO		7.				
Sufficient Volume?	Yes	No		8.				
Correct Containers Used?	Yes	[]No		9.				
-Pace Containers Used?	Yes	No						
Containers Intact?	- Aves	No		10.	<u></u>			
Filtered Volume Received for Dissolved Tests?	[]Yes		R	11.				
Sample Labels Match COC?	Yes	No		12.				
-Includes Date/Time/ID/Analysis Matrix:	SLT		NI/A					
All containers needing acid/base preservation have checked? All containers needing preservation are found to be compliance with EPA recommendation? (HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 C	e in	□No □No	WA HA	13. Sample #	∏HNO₃	∐H₂SO₄ [NaOH	Пнсі
Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC	Yes	- Mo	. <u>A</u> -	Initial when completed:		Lot # of preserv		
Headspace in VOA Vials (>6mm)?	Yes	No	Nya_	14,				
Trip Blank Present?	Yes	[]No	NSA NSA	15.				
Trip Blank Custody Seals Present? Pace Trip Blank Lot # (if purchased):	Yes	⊡No	N/A					
							a [⁻] ₁ ⁻	
LIENT NOTIFICATION/RESOLUTION			5	to Times		ld Data Required	i L_Ites [
Person Contacted:				te/Time:		· · ·		
Comments/Resolution:								
Project Manager Review: <u>Berly</u> tre: Whenever there is a discrepancy affecting North Ca Id, incorrect preservative, out of temp, incorrect contain	volina compliance sa			, Date:) 	Certification	Office (i.e d

Appendix C MID's Calculations

То:	Chris Long	From:	Brad Schleeter
File:	193802816	Date:	August 26, 2014

Reference: Northwood Lake – Water Quality Treatment Calculations

This memo provides the technical background information on the water quality treatment calculations summarized in the Northwood Lake Storm Water Improvements Feasibility Report [Report]. The Report includes three concept alternatives for water quality improvements for discharges to Northwood Lake. Each concept alternative is described below:

Concept A – This concept combines the water quality benefits of multiple Best Management Practices (BMPs), including a structural treatment device, a stormwater re-use system, and a series of biofiltration basins. See Figure 10 in the Report for the location of these BMPs. Concept A details are as follows:

- Total drainage area to the proposed Re-use System = 89.1 acres
- Total impervious area tributary to the proposed Re-use System = 19.9 acres
- Two existing water quality ponds (BC-P2.6A and BC-P2.6B) provide water quality treatment to 73.2 acres, prior to routing flows to the Proposed Re-use System
 - The treatment performance of existing ponds BC-P2.6A and BC-P2.6B was calculated using a PondNET model. The PondNET model spreadsheet is attached for reference
 - The treatment performance percentages shown on the PondNET model spreadsheet separate the particulate and dissolved fractions of phosphorus to match the input requirements in the MIDs calculator for Concepts A and B
 - The existing pond treatment performance percentages were directly input as "Other" BMPs in the MIDs calculator for Concepts A and B to best match the estimated pond performance
- Concept A will redirect flows in the existing 36-inch trunk stormsewer from the intersection of Boone Avenue an Hopewood Lane south to the intersection of Boone Avenue and Ensign Avenue
- A structural treatment device at the intersection of Boone Avenue and Ensign Avenue is proposed to provide pre-treatment of runoff prior to discharging into the stormwater reuse system
- A flow splitter in conjunction with the structural treatment device is being considered to route low flows into the stormwater re-use system and divert high flows into the adjacent proposed biofiltration basins

Reference: Northwood Lake - Water Quality Treatment Calculations

- The proposed stormwater re-use system includes a 160,000 gallon underground storage tank, pump system, and distribution system to irrigate 6.4 acres of existing ball fields with 1.5 inches of water per week from May to October
- The City is considering the incorporation of additional treatment measures into the stormwater re-use system which could include: screening, filtration, chemical addition, and disinfection
- The existing public water supply connection to the existing ball field irrigation system will remain connected to supplement the stormwater re-use system during dry times
- A backflow preventer is proposed within the stormwater re-use system to eliminate the possibility of cross contamination of the public water supply
- Overflows from the Boone Avenue trunk stormsewer and the re-use system tank, and local drainage from Drainage Area BC-2.9B (1.7 acres) are proposed to be routed to a series of biofiltration basins along Ensign Avenue
- The proposed biofiltration basins will be planted with native vegetation and connected by overland swales, ultimately discharging into Northwood Lake
- Drainage Area BC-2.9A will continue to discharge directly to Northwood Lake. This drainage area is routed to stormsewer that is too low to be routed into the proposed Concept A BMPs

Concept B – This concept proposes a water quality pond in Northwood Park. See Figure 11 in the Report for the location of this pond. Concept B details are as follows:

- Total drainage area to proposed Concept B Pond = 107.9 acres
- Total impervious area tributary to the proposed Concept B Pond = 26.8 acres
- The existing water quality ponds (BC-P2.6A and BC-P2.6B) treating 73.2 acres are included in the MIDs calculator as stated in the Concept A description
- Flow in the existing 36-inch south of Ensign Avenue will be redirected into proposed Concept Pond B
- The proposed Concept B Pond is represented in the MIDs calculator as a Design Level 1 constructed stormwater pond

Concept C – This concept proposes a water quality pond West of Jordan Avenue in Northwood Park. See Figure 12 in the Report for the location of this pond. Concept C details are as follows:

- Total Drainage Area to Proposed Concept C Pond = 19.4 acres
- Total impervious area tributary to the proposed Concept C Pond = 5.8 acres

Reference: Northwood Lake - Water Quality Treatment Calculations

- Flow in the existing stormsewer in Jordan Avenue will be redirected into proposed Concept C Pond
- The proposed Concept C Pond is represented in the MIDs calculator as a Design Level 1 constructed stormwater pond

The following is a summary of the MIDs calculator outputs for phosphorus and runoff volume for each of the proposed concepts as provided by the attached MIDs calculator summaries:

Runoff Volume Reduction Table

Concept	Total Drainage Area in System	Total Annual Runoff Volume	Proposed Total Annual Runoff Volume Removed	Proposed Percent Annual Runoff Volume Removed
	(acres)	(acre-feet)	(acre-feet)	(%)
Concept A	90.8	74.3	10.2	14%
Concept B	107.4	93.7	0.0	0%
Concept C	19.4	20.4	0.0	0%

Total Phosphorus Reduction Table

Concept	Total Drainage Area in System	Total Annual Phosphorus Load	Proposed Total Annual Phosphorus Removed	Proposed Percent Annual Phosphorus Removed
	(acres)	(pounds)	(pounds)	(%)
Concept A	90.8	60.6	16.3	27%
Concept B	107.4	76.4	15.4	20%
Concept C	19.4	16.6	5.7	34%

Stantec Consulting Services

Bring P. Schtuts

Bradley P. Schleeter P.E. Phone: (651) 604-4801 brad.schleeter@stantec.com

Attachment: MIDs Calculator Summary – Concept A MIDs Calculator Summary – Concept B MIDs Calculator Summary – Concept C PondNET Calculations

Design with community in mind

Project Information

Calculator Version:	Version 2: June 2014
Project Name:	Northwood Lake Water Quality Improvements - Concept A
User Name / Company Name:	Stantec
Date:	August 22, 2014
Project Description:	Stormwater reuse system and biofiltration cells

Site Information

Retention Requirement (inches):	1.1
Site's Zip Code:	55428
Annual Rainfall (inches):	30.5
Phosphorus EMC (mg/l):	0.3
TSS EMC (mg/l):	54.5

Total Site Area

Land Cover	A Soils (acres)	B Soils (acres)	C Soils (acres)	D Soils (acres)	Total (acres)
Forest/Open Space - Undisturbed, protected forest/open space or reforested land				23.18	23.18
Managed Turf - disturbed, graded for yards or other turf to be mowed/managed				47	47
		I	mpervious A	rea (acres)	20.61
			Total A	rea (acres)	90.79

Site Areas Routed to BMPs

Land Cover	A Soils (acres)	B Soils (acres)	C Soils (acres)	D Soils (acres)	Total (acres)
Forest/Open Space - Undisturbed, protected forest/open space or reforested land Managed Turf - disturbed, graded for yards or				23.18 47	23.18 47
other turf to be mowed/managed		Iı	mpervious A		20.61
			Total A	rea (acres)	90.79

Summary Information

Performance Goal Requirement

Performance goal volume retention requirement:	82295	ft3
Volume removed by BMPs towards performance goal:	16235	ft3
Percent volume removed towards performance goal	20	%
Annual Volume and Pollutant Load Reductions		
Post development annual runoff volume	74.3174	acre-ft
Annual runoff volume removed by BMPs:	10.1573	acre-ft
Percent annual runoff volume removed:	10.1373 14	%
Post development annual particulate P load:	33.35	lbs
Annual particulate P removed by BMPs:	25.63	lbs
Post development annual dissolved P load:	27.29	lbs
Annual dissolved P removed by BMPs:	7.88	lbs
Percent annual total phosphorus removed:	55	%
Post development annual TSS load:	11017	lbs
Annual TSS removed by BMPs:	9284	lbs
Percent annual TSS removed:	84	%

BMP Summary

Performance Goal Summary

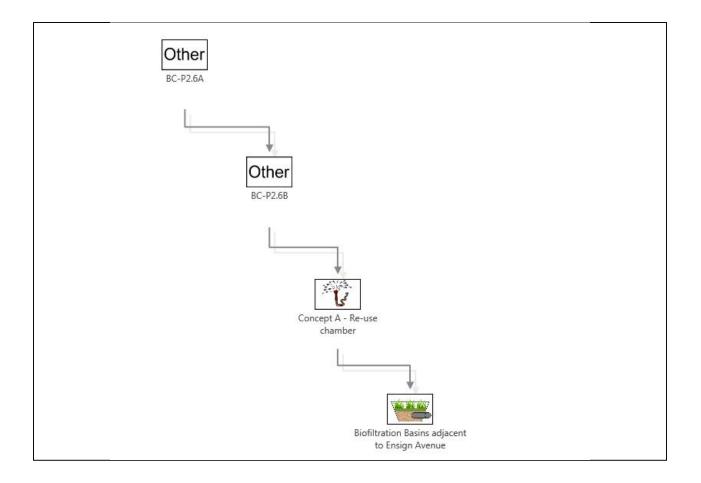
BMP Name	BMP Volume Capacity (ft3)	Volume Recieved (ft3)	Volume Retained (ft3)	Volume Outflow (ft3)	Percent Retained (%)
Biofiltration Basins adjacent to Ensign Avei	1300	67360	1300	66060	2
Concept A - Re-use chamber	14935	79620	14935	64685	19
BC-P2.6A	0	48435	0	48435	0
BC-P2.6B	0	55982	0	55982	0

Annual Volume Summary

BMP Name	Volume From Direct Watershed (acre-ft)	Volume From Upstream BMPs (acre-ft)	Volume Retained (acre-ft)	Volume outflow (acre-ft)	Percent Retained (%)
Biofiltration Basins adjacent to Ensign Avei	2.0222	63.1817	1.0437	64.1602	2
Concept A - Re-use chamber	18.6122	53.683	9.1135	63.1817	13
BC-P2.6A	35.0811	0	0	35.0811	0
BC-P2.6B	18.602	35.0811	0	53.6831	0

Particulate Phosphorus Summary

BMP Name	Load From Direct Watershed (lbs)	Load From Upstream BMPs (lbs)	Load Retained (Ibs)	Outflow Load (lbs)	Percent Retained (%)
Biofiltration Basins adjacent to Ensign Avei	0.91	13.35	6.54	7.72	46
Concept A - Re-use chamber	8.35	6.92	1.92	13.35	13
BC-P2.6A	15.74	0	11.69	4.05	74
BC-P2.6B	8.35	4.05	5.48	6.92	44


Dissolved Phosphorus Summary

BMP Name	Load From Direct Watershed (lbs)	Load From Upstream BMPs (lbs)	Load Retained (Ibs)	Outflow Load (lbs)	Percent Retained (%)
Biofiltration Basins adjacent to Ensign Avei	0.74	23.19	4.53	19.4	19
Concept A - Re-use chamber	6.83	19.71	3.35	23.19	13
BC-P2.6A	12.88	0	0	12.88	0
BC-P2.6B	6.83	12.88	0	19.71	0

TSS Summary

BMP Name	Load From Direct Watershed (lbs)	Load From Upstream BMPs (lbs)	Load Retained (Ibs)	Outflow Load (lbs)	Percent Retained (%)
Biofiltration Basins adjacent to Ensign Avei	300	4103	2670	1733	61
Concept A - Re-use chamber	2759	1936	592	4103	13
BC-P2.6A	5200	0	4550	650	88
BC-P2.6B	2758	650	1472	1936	43

BMP Schematic

Project Information

Calculator Version:	Version 2: June 2014
Project Name:	Northwood Lake Water Quality Improvements - Concept B
User Name / Company Name:	Stantec
Date:	August 22, 2014
Project Description:	Water quality pond in park

Site Information

Retention Requirement (inches):	1.1
Site's Zip Code:	55428
Annual Rainfall (inches):	30.5
Phosphorus EMC (mg/l):	0.3
TSS EMC (mg/l):	54.5

Total Site Area

Land Cover	A Soils (acres)	B Soils (acres)	C Soils (acres)	D Soils (acres)	Total (acres)
Forest/Open Space - Undisturbed, protected forest/open space or reforested land				23.18	23.18
Managed Turf - disturbed, graded for yards or other turf to be mowed/managed				57.4	57.4
		I	mpervious A	rea (acres)	26.77
			Total A	rea (acres)	107.35

Site Areas Routed to BMPs

Land Cover	A Soils (acres)	B Soils (acres)	C Soils (acres)	D Soils (acres)	Total (acres)
Forest/Open Space - Undisturbed, protected forest/open space or reforested land				23.18	23.18
Managed Turf - disturbed, graded for yards or other turf to be mowed/managed				57.4	57.4
		I	mpervious A	rea (acres)	26.77
			Total A	rea (acres)	107.35

Summary Information

Performance Goal Requirement

Performance goal volume retention requirement: Volume removed by BMPs towards performance goal: Percent volume removed towards performance goal Annual Volume and Pollutant Load Reductions	106892	ft3 ft3 %
Post development annual runoff volume	93.6514	acre-ft
Annual runoff volume removed by BMPs:	0	acre-ft
Percent annual runoff volume removed:	0	%
Post development annual particulate P load:	42.03	lbs
Annual particulate P removed by BMPs:	32.58	lbs
Post development annual dissolved P load:	34.39	lbs
Annual dissolved P removed by BMPs:	0	lbs
Percent annual total phosphorus removed:	43	%
Post development annual TSS load:	13883	lbs
Annual TSS removed by BMPs:	10739	lbs
Percent annual TSS removed:	77	%

BMP Summary

Performance Goal Summary

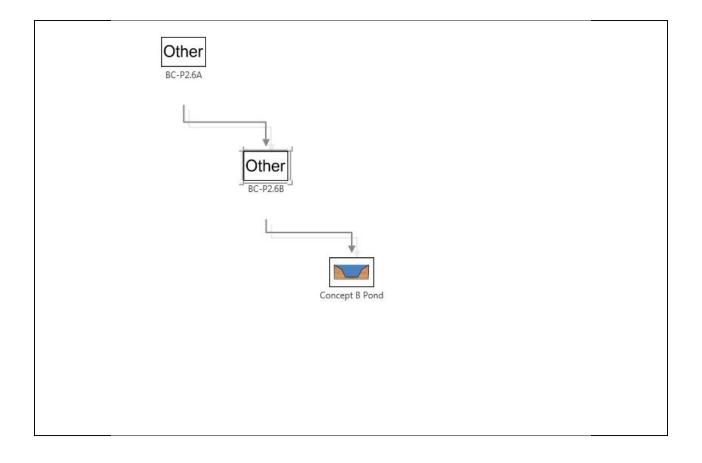
BMP Name	BMP Volume Capacity (ft3)	Volume Recieved (ft3)	Volume Retained (ft3)	Volume Outflow (ft3)	Percent Retained (%)
Concept B Pond	0	106893	0	106893	0
BC-P2.6A	0	48435	0	48435	0
BC-P2.6B	0	55982	0	55982	0

Annual Volume Summary

BMP Name	Volume From Direct Watershed (acre-ft)	Volume From Upstream BMPs (acre-ft)	Volume Retained (acre-ft)	Volume outflow (acre-ft)	Percent Retained (%)
Concept B Pond	39.9683	53.683	0	93.6513	0
BC-P2.6A	35.0811	0	0	35.0811	0
BC-P2.6B	18.602	35.0811	0	53.6831	0

Particulate Phosphorus Summary

BMP Name	Load From Direct Watershed (lbs)	Load From Upstream BMPs (lbs)	Load Retained (lbs)	Outflow Load (lbs)	Percent Retained (%)
Concept B Pond	17.94	6.92	15.41	9.45	62
BC-P2.6A	15.74	0	11.69	4.05	74
BC-P2.6B	8.35	4.05	5.48	6.92	44


Dissolved Phosphorus Summary

BMP Name	Load From Direct Watershed (lbs)	Load From Upstream BMPs (lbs)	Load Retained (Ibs)	Outflow Load (lbs)	Percent Retained (%)
Concept B Pond	14.68	19.71	0	34.39	0
BC-P2.6A	12.88	0	0	12.88	0
BC-P2.6B	6.83	12.88	0	19.71	0

TSS Summary

BMP Name	Load From Direct Watershed (lbs)	Load From Upstream BMPs (lbs)	Load Retained (Ibs)	Outflow Load (lbs)	Percent Retained (%)
Concept B Pond	5925	1936	4717	3144	60
BC-P2.6A	5200	0	4550	650	88
BC-P2.6B	2758	650	1472	1936	43

BMP Schematic

Project Information

Calculator Version:	Version 2: June 2014
Project Name:	Northwood Lake Water Quality Improvements - Concept C
User Name / Company Name:	Stantec
Date:	August 22, 2014
Project Description:	Water quality pond in park

Site Information

Retention Requirement (inches):	1.1
Site's Zip Code:	55428
Annual Rainfall (inches):	30.5
Phosphorus EMC (mg/l):	0.3
TSS EMC (mg/l):	54.5

Total Site Area

Land Cover	A Soils (acres)	B Soils (acres)	C Soils (acres)	D Soils (acres)	Total (acres)
Forest/Open Space - Undisturbed, protected forest/open space or reforested land					0
Managed Turf - disturbed, graded for yards or other turf to be mowed/managed				13.57	13.57
		I	mpervious A	rea (acres)	5.81
			Total A	rea (acres)	19.38

Site Areas Routed to BMPs

Land Cover	A Soils (acres)	B Soils (acres)	C Soils (acres)	D Soils (acres)	Total (acres)
Forest/Open Space - Undisturbed, protected forest/open space or reforested land					0
Managed Turf - disturbed, graded for yards or other turf to be mowed/managed				13.57	13.57
		Ir	mpervious A	rea (acres)	5.81
			Total A	rea (acres)	19.38

Summary Information

Performance Goal Requirement

Performance goal volume retention requirement: Volume removed by BMPs towards performance goal: Percent volume removed towards performance goal Annual Volume and Pollutant Load Reductions	23199	ft3 ft3 %
Post development annual runoff volume	20.3862	acre-ft
Annual runoff volume removed by BMPs:	0	acre-ft
Percent annual runoff volume removed:	0	%
Post development annual particulate P load:	9.15	lbs
Annual particulate P removed by BMPs:	5.67	lbs
Post development annual dissolved P load:	7.49	lbs
Annual dissolved P removed by BMPs:	0	lbs
Percent annual total phosphorus removed:	34	%
Post development annual TSS load:	3022	lbs
Annual TSS removed by BMPs:	1813	lbs
Percent annual TSS removed:	60	%

BMP Summary

Performance Goal Summary

BMP Name	BMP Volume	Volume	Volume	Volume	Percent
	Capacity	Recieved	Retained	Outflow	Retained
	(ft3)	(ft3)	(ft3)	(ft3)	(%)
Concept C Pond	0	23199	0	23199	0

Annual Volume Summary

BMP Name	Volume From Direct Watershed (acre-ft)	Volume From Upstream BMPs (acre-ft)	Volume Retained (acre-ft)	Volume outflow (acre-ft)	Percent Retained (%)
Concept C Pond	20.3862	0	0	20.3862	0

Particulate Phosphorus Summary

BMP Name	Load From Direct Watershed (lbs)	Load From Upstream BMPs (lbs)	Load Retained (Ibs)	Outflow Load (lbs)	Percent Retained (%)
Concept C Pond	9.15	0	5.67	3.48	62

Dissolved Phosphorus Summary

BMP Name	Load From Direct Watershed (lbs)	Load From Upstream BMPs (lbs)	Load Retained (Ibs)	Outflow Load (lbs)	Percent Retained (%)
Concept C Pond	7.49	0	0	7.49	0

TSS Summary

BMP Name	Load From Direct Watershed (lbs)	Load From Upstream BMPs (lbs)	Load Retained (Ibs)	Outflow Load (lbs)	Percent Retained (%)
Concept C Pond	3022	0	1813	1209	60

BMP Schematic

MPUT VARIABLES INPUT VARIABLES Case labor Total watershed area Basin area Basin area Adricutural			_	
		BC-P2.6A	BC-P2.6B	To Chamber
	C.	A - BC-P2.6A A - BC-P2.6B	A - BC-P2.6B A - Concept A East	A - Concept A East A - Park
		1 26	9	18.0
	acres	21:1 0.31	0.68	0.00
ommercial		0%0	%0	%0
off		%0	%0	%0
gh Density Residential		%0	%0 %0	%U %D
stitutional		%0	%0	%0 %0
ow Density Residential edium Density Residential		%0 %0	%0	%0 %0
arks and Open Space		%0 %0	100% 0%	%0 %0
MC		%0	%0	%0
	Total	100%	100%	100%
ACCOU	NTING			
	ac	27.07 0.31	72.17 0.99	88.14 0.99
rect and ponded area	ac	27.38	73.16	89.13
ASSUMED EXPORT FACTOR: season length	S VIS	·		L.
ason precipitation	inches	31.4	31.4	31.4
noff ortho p/total p	ada	0.30	0.50	0.30
hit export	in/yr Ibs/ac-y	8.28 0.84	2.20 0.12	8.28 0.84
POND WATER BUDGETS				
	ac-ft/yr	18.89	8.39 18 80	11.02
total inflow	ac-ft/yr ac-ft/yr	18.89	27.27	38.29 38.29 38.29
	-10 J	2	i	21.00
	lbs/yr	23.03	5.68	13.43
tal inflow	lbs/yr	23.03	16.73	26.57
at sedimentation	bs/yr	11.98	3.59 13.14	0.00 26.57
p removal efficiency	% Ibs/yr	52.03 23.03	21.48 28.71	0.00 42.15
	%	52.03	54.25	36.96
HYDRAULIC PARAMETERS		00.0	29.9	90. 9
	teet inches	2.82 1.45	1.15 2.94	0.00
sidence time	years	0.05	0.03	0.00
	days ft/yr	16.91	40.11	0.00 3828904.57
	dqq	448.68 215.23	225.69	255.31 255.30
	2	2.26	0.35	0.00
1-rp vlawmo pond volume	- acre-ft	0.48 1.50	0.67	0.88
-				
-	ddd	450.00	250.00	450.00
dissolved/total P	au	0.30	0.50	0.30
		00.04	000014	0000
	bs/yr	7084.61	4836.04	4179.38
	lbs/yr Ibs/yr	0.00 7084.61	885.58 5721.62	3249.06 7428.44
o inf)	%	53.00 87 50	22.00	0.00
2	lbs/yr	6199.03	2472.56	0.00
nf)	105/ yr %	87.50	43.21	0.00
upstream watershed tss load I tss total removal efficiency	lbs/yr %	7084.61 87.50	11920.65 72.74	16100.03 53.86
_				
	% ac-ft/vr	0% 18.89	0% 27.27	0% 38.29
Adjusted TP outflow	lbs/yr bs/vr	11.05 885.58	13.14 3249.06	26.57 7428.44
		00 20	000	46.07
Developed Area Upstream Developed Area		27.38	0.00 27.38	15.9/ 43.34

Pond	Particulate Phosphorus Load	Dissolved Phosphorus Load	Total Particulate Total Dissolved Phosphorus Phosphorus Load Load	Total Dissolved Phosphorus Load	Particulate Phosphorus Load Removed	Dissolved Phosphorus Load Removed	% Particulate Phosphorus Removed	% Dissolved Phosphorus Removed
	(sql)	(sql)	(sql)	(lbs)	(Ibs)	(sql)	(%)	(%)
C-P2.6A	16.1	6.9	16.1	6.9	12.0	0.0	74.4%	0.0%
C-P2.6B	4.0	1.7	8.1	8.6	3.6	0.0	44.4%	0.0%

	8			
	% TSS Removed	(%)	87.5%	43.2%
nce - TSS	TSS Load Removed	(sql)	6199	2473
Existing Pond Performance - TSS	Total TSS Load	(lbs)	7085	5722
Existi	Watershed TSS Load	(lbs)	7085	4836
	Pond		BC-P2.6A	BC-P2 6B

This Page Left Blank Intentionally

Appendix D Northwood Lake Information r Al

February 6, 2014

Mr. Dave Callister, City Manager City of Plymouth 3400 Plymouth Blvd. Plymouth MN 55447-1448

Subject: Northwood Lake Information

Dear Dave:

I am writing in follow up to a recent conversation we had regarding the Four Seasons/Northwood Lake water quality improvement project. You indicated it would be helpful if the Plymouth City Council had more information regarding what the city of New Hope and residents residing around Northwood Lake had done to improve the water quality of the lake. I am enclosing some general information about Northwood Lake, a listing of past projects and activities that have been completed to improve water quality, information about the Lake Association, general city maintenance activities that impact water quality, and potential future projects to be completed. The location of both the projects completed in past years and proposed to be completed in the future are denoted on the attached map. As you will note, a number of projects have been completed to help improve the water quality around Northwood Lake.

I hope this information is useful to the city of Plymouth as you move forward with the Four Seasons/Northwood Lake water quality improvement project. Please contact me, 763-531-5112 or <u>kmcdonald@ci.new-hope.mn.us</u> if you have any questions.

Sincerely,

Kirk McDonald City Manager

Attachments: Northwood Lake information

Cc: New Hope City Council Robert White, Northwood Lake Association

CITY OF NEW HOPE

4401 Xylon Avenue North • New Hope, Minnesota 55428-4898 • www. ci.new-hope.mn.us City Hall: 763-531-5100 • Police (non-emergency): 763-531-5170 • Public Works: 763-592-6777 • TDD: 763-531-5109 City Hall Fax: 763-531-5136 • Police Fax: 763-531-5174 • Public Works Fax: 763-592-6776

NORTHWOOD LAKE

1. GENERAL INFORMATION

Northwood Lake has a surface area of about 15 acres and has a watershed (drainage area) of approximately 1,340 acres. A total of 824 acres are in the city of Plymouth, and 516 acres are in New Hope. Bassett Creek Watershed Management Commission's management classification is a "Level II" for Northwood Lake; recreational with non-body contact activities.

Northwood Lake is on the state's impaired water list for excessive nutrients and will need a "Total Maximum Daily Load" (TMDL) study completed. In 2009, the level of phosphorous concentration in the lake was four (4) times higher than the Bassett Creek Watershed Management Commission's goal of 45 ug/L.

Working with the MPCA and the Bassett Creek Watershed Management Commission, the TMDL study will identify Best Management Practices (BMPs) to reduce the concentration of phosphorous in the lake. An example of a BMP would be a water quality pond improvement project.

2. PAST PROJECTS/ACTIVITIES COMPLETED

Please note: Letters in parenthesis next to an item denotes location on attached map

1970 - 1980

Material from the bottom of Northwood Lake was pumped out in the mid-70s, and in 1979-1980 the west end was dredged as a city/county project to remove sediment buildup in the lake from County Road 18 improvements.

1996

City adopts phosphorous free fertilizer ordinance to regulate commercial lawn fertilizer application companies in the city. The ordinance was adopted to protect water resources in the city, and fertilizer containing phosphorous cannot be applied except in rare circumstances. Fertilizers may not be applied in buffer zones outlined in the wetland ordinance below the ordinary high water lines or within 50 feet of any wetland or water resource. An educational campaign was also implemented to educate residents about the negative impacts of fertilizers containing phosphorous.

1997

(A) New outlet pipe and weir structure installed under Boone Avenue for both water quality and quantity purposes and channel rerouted for more direct flow to help prevent flooding.

In addition to the new outlet pipe structure installed under Boone Avenue similar new pipes were installed under Winnetka Avenue, and under the CP Railroad bridge over 36th Avenue to approximately Nevada Avenue.

(B) Two new water quality cells (NB35A&B) constructed by city south of Northwood Lake for sediment control.

A FILE AND THE REPORT OF A CONTRACT OF A CONTRACT

1999

- (C) Two new flood and water quality ponds (NB-28A&B) installed at Gethsemane Cemetery east of Boone Avenue for sediment control before entering Northwood Lake.
- (D) Construction of two new water quality cells north of Northwood Park trail and south of the wetland between Boone and Winnetka Avenues.

a second we have a second second with the second second second second second second second second second second

2000-2002

Barley straw was applied during three summers to help alleviate the buildup of filamentous algae on the surface. Neighborhood meetings were conducted to discuss this treatment and the importance of creating buffer zones was discussed with residents. It seemed to help reduce the impact of the algae mats for the first couple of years. The last two years the amount of barley straw was increased. Even with the increase in the amount of straw used, the straw seemed less and less effective, and the applications were discontinued. Although the effectiveness of the barley straw on the filamentous algae decreased, the Secchi Disc depth (clarity of water column) improved.

2002

(E) Three new water quality cells (NB-37A&38A) constructed by city around Hidden Valley Park for sediment control and increased capacity with final restoration completed in the fall of 2003.

2003

(F) Storm water rerouted from Ensign Avenue and 35th Avenue to new pond at St. Joseph's Catholic Church (NB-36A); new 36" pipe installed to limit erosion in ravine near St. Joseph's Church pond; and installed upstream rate control into St. Joseph's pond.

2004

(G) City constructed the regional storm water pond southwest of St. Joseph Catholic Church east of 35th Avenue cul de sac. The project was part of the city's 1996 Surface Water Management Plan and included in the Bassett Creek Watershed Management Commission's capital improvement program and Second Generation Plan. The primary purpose of the project was to provide water quality treatment for 67 acres of property, providing benefit to both Northwood Lake and the north branch of Bassett Creek. Total cost of the project was approximately \$183,000 paid from the city's storm water fund, storm water fees from adjacent properties, and from the Bassett Creek Watershed Management Commission.

2008

A SALE AND A REAL AND A

(H) City completed the construction of Northwood east sediment pond located north of the Northwood Park wetland between Boone and Winnetka Avenues. The project was part of the city's 1996 Surface Water Management Plan and part of the Bassett Creek Watershed Management Commission's CIP. The pond functions as a sediment trap which provides a water quality benefit by settling out sediments and removing phosphorous, protecting the existing Northwood Creek channel and wetland area. The pond benefits the north branch of Bassett Creek and provides water quality treatment for approximately 22 acres. A total of 2,200 cubic yards were removed to create the pond, and the total project cost was approximately \$107,000, which was funded by the Bassett Creek Watershed Management Commission and city's storm water fund.

2009

(I) City completed the Northwood Lake west inlet cleaning project at west end of Northwood Lake. A delta of sediment existed in front of the inlet structure on the northwest corner of the lake, and it was important to remove the sediment so the lake continued to function as originally designed in regards to both water quality/quantity. The project was recommended in the city's 1996 Surface Water Management Plan. A total of 363 cubic yards of sediment was removed. Project cost was approximately \$85,000, and was funded primarily from the city's storm water fund.

City coordinates Northwood Lake neighborhood meeting to discuss water quality issues, and encourages formation of lake association by residents (similar to the Meadow Lake Association in north part of city). Northwood Lake Association was formed.

2011

(J) City completed Northwood wetland channel cleaning project between Boone and Winnetka Avenues to clean out accumulated sediment. A total of 2,075 cubic yards of material was removed. Total project cost was approximately \$185,000.

2013

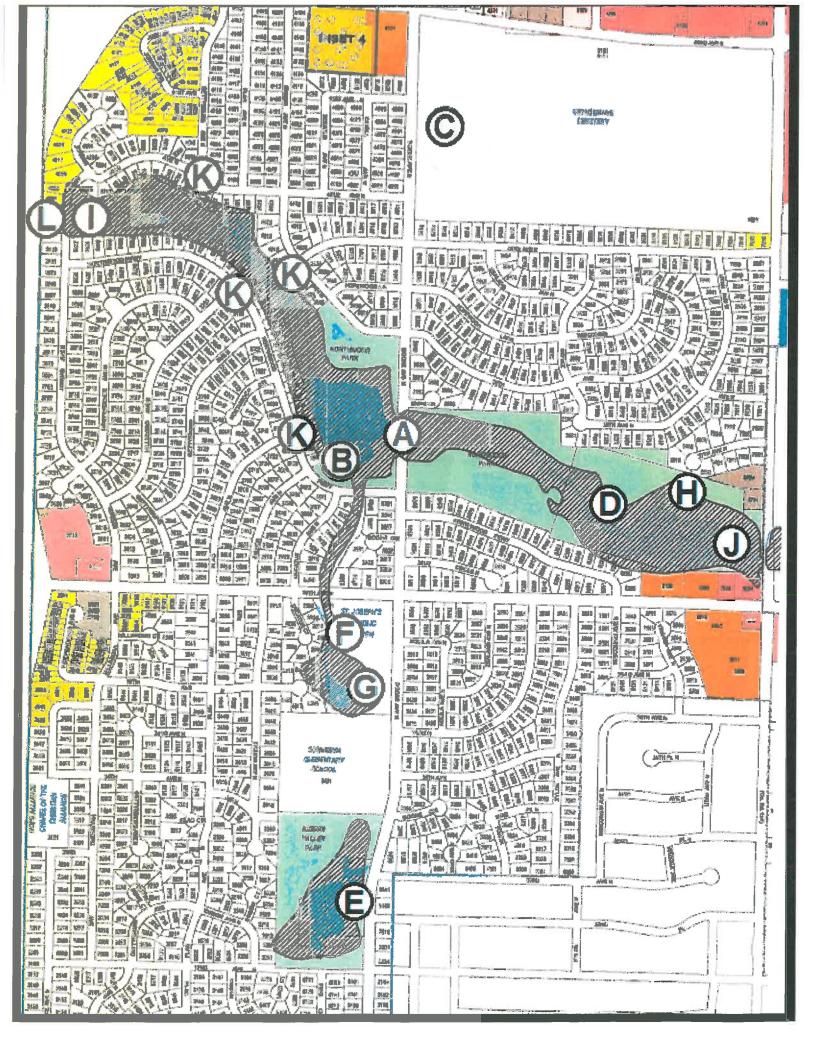
City implemented Canada goose egg addling project to reduce the number of geese/feces in Northwood Park and Lake which impact the water quality. Permits were applied for and received from the U.S. Fish & Wildlife Service and the MN Department of Natural Resources to allow the city to conduct the project. A total of 22 nests with 118 eggs were addressed, which resulted in a significant drop in the goose population. Northwood Lake residents supported the project, and the city will continue the program in 2014.

3. LAKE ASSOCIATION

The Northwood Lake Association, acting both independently and in conjunction with the city, has been active in promoting water quality activities and projects around Northwood Lake. Annual meetings are conducted and speakers from the DNR have spoken to educate residents about the importance of buffer strips to improve water quality. Efforts have been made to keep grass clippings and other yard waste out of the lake, and an "adopt a storm drain" program is being pursued and residents actively monitor catchbasin drains around the lake. The association members have also physically removed sediment from the center of the lake, and the city coordinated on the disposal of the material. Annual cleanups around the lake are sponsored by the association.

4. GENERAL MAINTENANCE

Ongoing maintenance includes increased street sweeping activities in the lake's watershed area in addition to the city's regular spring and fall contracted sweeping; the sweeping of debris on Northwood Park trails as time and staffing allow; and removal of future sediment build up at the lake's west inlet by city staff.


Over the past several years, the city has changed snow plowing/application procedures from a salt/sand mixture to the use of clearlane salt to eliminate the use of most sand from winter operations to help keep sediment out of the city's water bodies.

The city has also actively installed buffer strips around ponds in all areas of the city to prevent erosion and improve water quality.

5. FUTURE PROJECTS

- (K) Future BMPs/projects will include the installation of grit chambers upstream from the multiple inlets around the lake. The installation of grit chambers will be coordinated with future street infrastructure improvements to Northwood Parkway, 40¹/₂ Avenue, and Ensign Avenue.
- (L) The city's Local Water Management Plan and the Bassett Creek Watershed Management Commission's Capital Improvement Plan include the dredging of a large pond on the west side of TH 169, upstream from Northwood Lake's large west inlet in the future. In conjunction with this project, a water quality cell is proposed to be constructed on the vacant property west of Jordan Avenue at the west end of Northwood Lake.

Additional future improvements included in both the city's and commission's plans are additional water quality cells in Northwood Park, north and south of the lake and west of Boone. The commission's plan proposes the construction of these improvements in 2016.

Appendix E Local Water Management Plan Excerpts

Major Drainage Area ID	Stormwater Issue	Issue Category	Corrective Action Taken	Year Completed
SC-A4	Channel erosion in Subdistrict SC-A4.9	Water Quality, Erosion	 Additional rate control provided in constructed ponds SC-P4.3, SC-P4.9A and SC-P4.9B. 	1998
SC-A4	Insufficient water quality treatment in District SC-A4 tributary to Upper Twin Lake	Water Quality	 Cleaned deposited sediments out of channel adjacent to railroad tracks. Water quality treatment provided in constructed ponds SC-P4.9A and SC-P4.9B. 	1997 1998
SC-A5	Insufficient water quality treatment in District SC-A5 tributary to Memory Lake Pond and Upper Twin Lake	Water Quality	- Excavated 1.5 acre-feet of wet ponding volume within the CCI pond (SC-P5.14) and redirected adjacent 33-inch trunk storm sewer into this pond to provide water quality treatment.	1996
SC-A5	Excessive discharge rates out of District SC-A5 discharging to Crystal	Water Quantity	Excavated 10.6 acre-feet of flood storage volume in the CCI pond (SC-P5.14).	1996
SC-A5	Local flooding at the intersection of 45 th and Xylon Avenues	Water Quantity	- Rerouted storm sewer flows from 42 nd and Winnetka Avenues away from the trunk system serving this intersection.	1999
SC-A6	Untreated stormwater runoff discharge into a DNR Protected Water (SC-P6.8)	Water Quality	- Excavated 1.4 acre-feet of wet ponding volume in the Pet Hospital Pond (SC-P6.7) and 0.6 acre- feet of wet ponding volume in the Collisys Site Pond (SC-P6.19) to provide water quality treatment prior to discharging to SC-P6.8.	2003
SC-A7	Untreated stormwater runoff discharging into Victory Park Pond, a DNR Protected Water (SC-P7.3)	Water Quality	- Excavated 2.7 acre-feet of wet ponding volume as part of the Victory Park Pond Improvements project (SC-P7.7) at the inlets from Boone Avenue.	2005
	Local flooding at the intersection of Boone Avenue		- Rerouted 24-inch Boone Avenue storm sewer flows from the south around this intersection to free pipe capacity at the intersection.	2005
SC-A7	and East Research Center Road	Water Quantity	- Upsized the existing 36-inch trunk pipe to a 54- inch trunk pipe in East Research Center Road at the point at which the rerouted flows from Boone Avenue tie into this system.	2005
BC-A1	Local rear-yard flooding east of Independence Circle	Water Quantity	 Provided additional downstream pipe capacity via 27" storm sewer in Independence Circle and 36" storm sewer to the south. 	2004
BC-A2	Local flooding location for properties adjacent to Hidden Valley Park pond (BC-P2.2A)	Water Quantity	- Provided an additional 3.2 acre-feet of flood storage within Hidden Valley Park pond (BC- P2.2B-D) [BCWMC WMP ID# NB-37A, NB-38A].	2003
BC-A2	Ravine erosion in subdistrict BC-A2.3, contributing excessive Total Suspended	Water Quality, Erosion	- Provided upstream rate control in the St. Josephs Church regional pond (BC-P2.3) to control discharge rates to this ravine.	2003
	Solids load to Northwood Lake	LIUSION	- Constructed a 36-inch pipe low flow diversion parallel to the ravine to protect the channel.	2003

Major Drainage Area ID	Stormwater Issue	Issue Category	Corrective Action Taken	Year Completed
BC-A2	Insufficient water quality treatment of flows discharging to Hidden Valley Park pond (BC-P2.2A)	Water Quality	- Excavated an additional 1.4 acre-feet of wet volume within a series of stormwater wetland cells in Hidden Valley Park pond (BC-P2.2B-D) [BCWMC WMP ID# NB-37A, NB-38A] to provide water quality treatment for the residential area and grade school draining to this pond. In addition to the wet volume benefit, increased biological uptake by the wetland plantings is expected.	2002
BC-A2	Local flooding location for properties adjacent to	Water Quantity	- Provided a total of 5.8 acre-feet of flood storage in the Gethsemane Cemetery pond (BC-P2.6A-B) <i>[BCWMC WMP ID# NB-28A, B]</i> to reduce the peak discharge rates to Northwood Lake (BC-P2.5A).	1999
	Northwood Lake (BC-P2.5A)	Water Quantity	 Upsized the existing outlet for pond Northwood Lake (BC-P2.5A) to a 3'x7' box culvert. Upsized 36th Ave. N. pipe from 18" to 24" 	1997 2002
			between Flag Ave. N. and Ensign Ave. N. - Excavated 2.8 acre-feet of wet volume in pond BC-P2.3 (St. Joseph's Church) <i>[BCWMC WMP ID#</i> <i>NB-36A</i> /to provide water quality treatment prior to discharging to Northwood Lake (BC-P2.5A).	2002
BC-A2	Untreated stormwater runoff discharging to Northwood Lake (BC-P2.5A)	Water Quality	- Excavated 1.7 acre-feet of wet volume in the 2- cell pond BC-P2.6A-B <i>[BCWMC WMP ID# NB- 28A-B]</i> and rerouted flows from Boone Avenue into pond to provide water quality treatment prior to discharging to Northwood Lake.	1999
			- Excavated 1.0 acre-feet of wet volume within a 3-cell pond BC-P2.5B <i>[BCWMC WMP ID#- NB-35A, B, C]</i> to provide water quality treatment prior to discharging to Northwood Lake.	1999
			- Rerouted flows from Ensign Ave into St. Joseph's Church pond (BC-P2.3).	2003
			- Re-aligned channel between Northwood Lake (BC-P2.5A) and pond BC-P3.15A to improve stability.	1997
BC-A3	Channel erosion between Northwood Lake (BC-P2.5A) and pond BC-P3.15A	Water Quality, Erosion	 Provided a variety of plantings along the re- aligned channel to improve slope stability, provide a stream buffer, and improve wildlife habitat. 	1997
			- Re-aligned channel graded with stable grade and gentle side slopes.	1997
BC-A3	Insufficient water quality treatment prior to discharging to Bassett Creek and Basset Creek Park Pond	Water Quality	- Constructed water quality treatment cell BC- P3.27 immediately southwest of the intersection of 36 th Ave N and the railroad.	1996
BC-A3	Local flooding in 36 th Ave N between Zealand Ave and Yukon Ave	Water Quantity	-Increased storm sewer pipe size to 21" and routed pipes along 36 th Ave N rather than through development south of 36 th Ave N.	2002

Major Drainage _ Area ID _	Stormwater Issue	Issue Category	Corrective Action Taken	Year Completed
BC-A3	Untreated stormwater runoff discharging to pond BC-P3.15A	Water Quality	 Constructed water quality treatment cell BC- P3.15B (wet volume = 0.2 acre-feet), immediately adjacent to the re-aligned channel between Northwood Lake (BC-P2.5A) and BC-P3.15A. Constructed water quality treatment cell BC- P3.15D (wet volume = 0.03 acre-feet), adjacent to the re-aligned channel between Northwood Lake (BC-P2.5A) and BC-P3.15. 	
			- Rerouted untreated upstream flows from Northwood Parkway (east of Boone Avenue) into the excavated water quality treatment cell (0.4 acre-feet of wet volume) BC-P3.15E.	1999

6.2 EXISTING STORMWATER MANAGEMENT ISSUES AND POSSIBLE CORRECTIVE ACTIONS

The following list of items presented in Table 6.2 represent current stormwater management issues or concerns as identified by the documents included in Section 4 of this plan. It is not the intent of this list to include all of the current stormwater management issues identified in the watershed documents in Section 4, only those issues with a possibly corrective action that directly affects the City. The implementation of the possible corrective actions will be addressed in the Implementation Section (Section 8).

Major Drainage Area ID	Stormwater Issue	lssue Category	lssue Identified by:	Possible Corrective Actions
SC-A1	Degraded water quality within Meadow Lake (SC-P1.1)	Water Quality	City, SCWMC- WMP	 Pursue golf course fertilizer management education. Install wetland plantings in pond SC-P1.1A to increase biological uptake. Conduct waterfowl management (shoreline plantings). Provide public education regarding stormwater quality, including proper fertilizer application and the disposal of yard and pet waste. Cooperate with the SCWMC to address the nutrient load allocation requirements to be included in the future TMDL Implementation plan.
SC-A1	Flooding issues adjacent to Bass Creek.	Water Quantity	City	 Investigate home low opening elevations adjacent to Bass Creek to identify potential flooding issues.
SC-A2	Insufficient water quality treatment in Major Drainage Area SC-A2 tributary to Upper Twin Lake	Water Quality	City	- Look for opportunities to construct water quality BMPs in the area tributary to the basin adjacent to 60 th and Quebec Avenues (SC-P2.6) tributary to Upper Twin Lake.

Table 6.2 - Current Stormwater Management Issues and Possible Corrective Actions¹⁹

¹⁹ This stormwater management issues list only includes those issues directly affecting the City of New Hope, as identified by any of the documents listed in Section 4, and is not meant to incorporate all of the stormwater management issues identified in the documents in Section 4.

Major Drainage Area ID	Stormwater Issue	lssue Category	Issue Identified by:	Possible Corrective Actions
SC-A3	Insufficient water quality treatment in the Wincrest pond (SC-P3.4) tributary to Upper Twin Lake	Water Quality	City	 Reroute storm sewer flows from Winnetka Avenue to the west end of Wincrest pond (SC-P3.4), to maximize inflow residence time. Excavate additional wet ponding volume in the Wincrest pond (SC-P3.4) to improve water quality treatment efficiency.
SC-A3	Insufficient trunk storm sewer capacity along Bass Lake Road	Water Quantity	City	- Provide additional pipe capacity in coordination with the City of Crystal.
SC-A3	Possible flooding issues in the apartments adjacent to the Village Golf Course pond (SC-P3.2)	Water Quantity	City	- As redevelopment occurs in this area, investigate potential local flooding issues and address as necessary.
SC-A5	Excessive discharge rates out of District SC-A5 discharging to Crystal	Water Quantity	City	 Expand flood storage and restrict discharge out of the 45th Avenue pond (SC-P5.12). Provide additional flood storage in Sunnyside Park (SC-A5.19 and SC-A5.21).
SC-A5	Local flooding at the intersection of 45 th and Xylon Avenues	Water Quantity	City	- Provide additional trunk storm sewer capacity in 45 th Avenue upstream of the 45th Avenue pond (SC-P5.12).
SC-A5	Local drainage problems at the apartments south of Fred Sims Park	Water Quantity	City	- A part of improvements to Fred Sims Park, investigate existing drainage issues in the apartments to the south.
SC-A5	Local flooding at the 42 nd Avenue low point at the railroad underpass	Water Quantity	City, SCWMC- WMP	 Provide additional downstream trunk pipe capacity, see the 42nd Ave flood study. Reroute local storm sewer flows along 42nd Avenues at Winnetka Avenue, Quebec Avenue, Nevada Avenue, and Oregon Avenue away from the trunk system serving this intersection, see the 42nd Ave flood study.
SC-A5	Insufficient water quality treatment in District SC-A5 tributary to Memory Pond	Water Quality	City	 Excavate wet ponding volume in the 45th Avenue pond (SC-P5.12). Provide appropriate water quality BMPs in Sunnyside Park (SC-A5.19 and SC-A5.21).
SC-A6	Untreated stormwater runoff discharge into DNR Protected Water wetland SC-P6.6A	Water Quality	City	- Excavate wet ponding volume at the wetland inlets adjacent to Erickson Drive (SC-P6.6B).
SC-A6	Untreated stormwater runoff discharge into DNR Protected Water wetland SC-P6.8	Water Quality	City	- Construct ponds SC-P6.14 and SC-P6.16.
SC-A6	Degraded wetland habitat in DNR Protected Water wetlands SC-P6.6A and SC-P6.8	Water Quality	City	 Provide habitat restoration including vegetation management and diversification, and excavation. Public education regarding protecting wetland habitat.
SC-A6	Local flooding at the intersection of 47 th and Flag Avenues North	Water Quantity	City	 Lower the overland EOF from this intersection, see 47th and Flag Avenues flood study. Minimize upstream catch basin bypass. Provide additional downstream trunk pipe capacity in Flag Avenue.

Major Drainage Area ID	Stormwater Issue	lssue Category	Issue Identified by:	Possible Corrective Actions
SC-A7	Insufficient water quality treatment in subdistrict SC-A7.4 and SC-A7.5 tributary to Bass Creek	Water Quality	City	 Public education to include proper fertilizer application and the disposal of yard and pet waste. Focus frequent street sweeping efforts in area.
SC-A7	Local flooding at the intersection of Boone Ave and E Research Cntr Rd	Water Quantity	City	- Provide additional trunk pipe capacity immediately downstream of the intersection.
SC-A1-A7	Increased impervious surface as watershed becomes fully developed will increase the duration and frequency of bank full conditions and should be addressed and monitored	Water Quantity	SCWMC- WMP	-Encourage the reduction of impervious surface by promoting low impact development principles and strategies for new development and redevelopment projects.
	Standards that have prevented flooding potential as the Shingle Creek watershed has developed should be continued or enhanced as development is completed	Water Quantity	SCWMC- WMP	- New development or redevelopment projects shall not increase the existing 100-year peak rate from the site.
SC-A1-A7				- Seek opportunities to provide additional rate control to reduce the 100-year peak discharge rate from New Hope.
SC-A1-A7	Water quality and stability of Shingle Creek should be improved	Water Quality	SCWMC- Shingle Creek Corridor Study, WMP	 Improvement projects or management strategies shall not increase the 100-year elevation of Shingle Creek nor its tributaries or floodplain storage areas. Any fill that impacts flood storage in wetlands or floodplains shall be mitigated with compensating storage within the same subreach or reach. Enact and enforce standards specifying buffer
				maintenance adjacent to Shingle Creek and its tributaries. -Work with the SCWMC to develop a Shingle Creek Management Plan. -Construct or encourage the construction of streambank stabilization and habitat restoration projects.
SC-A1-A7	Excessive chloride levels in Shingle Creek	Water Quality	Shingle Creek Chloride TMDL	 Calibrate salt spreaders annually. Use the Road Weather Information Service and other sensors to improve salt application decisions. Evaluate new technologies on an annual basis, such as prewetting and anti-icing as equipment needs replacement. Investigate and adopt new salt products, such as Clear Lane, where feasible and cost effective. Maintain good housekeeping practices associated with the handling of road salt to minimize the potential for wash-off. Provide operator training. Stockpile snow away from sensitive areas. Sweep City streets in late winter to remove as much residual salt as possible. Track and report activities in annual NPDES report, provide a copy to the Commission.

Major Drainage Area ID	Stormwater Issue	lssue Category	lssue Identified by:	Possible Corrective Actions
SC-A1- A7	General water resource water quality degradation	Water Quality	SCWMC- WMP	-Work with SCWMC to develop management plans for affected water resources.
SC-A1- A7	Water quality in Twin Lake, especially Upper Twin Lake should be improved	Water Quality	SCWMC- WMP	-Work with SCWMC to develop a Twin Lake Management Plan. -Promote good housekeeping practices amongst property owners in Twin Lake subwatershed.
SC-A1- A7	Wetland protection and restoration	Water Quality	SCWMC- WMP	 Wetland mitigation should be provided within the same subwatershed. Prioritize wetlands and complete wetland functions and values assessment. Establish buffer strip requirements adjacent to wetlands and watercourses. Identify wetland restoration possibilities and construct or encourage the construction of restoration projects.
BC-A1- A4	Insufficient water quality treatment tributary to and degraded water quality in Medicine Lake, Northwood Lake (BC-P2.5), and Bassett Creek and Bassett Creek Park Pond	Water Quality	City, BCWMC- WMP	 Construct appropriate water quality BMP(s) in Jaycee Park (BC-A1.2). Excavate wet ponding volume in Northwood Park (BC-P2.5C) - BCWMC WMP ID# NB-29A-B. Require wet detention, or other techniques that provide equal degrees of treatment, for all new or redeveloped properties, where applicable. Provide public education to residents and lake users on practices that would reduce pollutants. Enforce City ordinances regarding disposal of litter, yard waste, and animal waste. Place additional garbage cans adjacent to waterbodies to provide more convenience for disposal of garbage. Promote stormwater retention and runoff volume reduction (e.g. reduced impervious surfaces) where feasible. Encourage vegetated buffer strips between maintained lawns and waterbodies. Excavate bottom sediment to remove a nutrient source.
BC-A2	Local flooding location for properties adjacent to pond BC-P2.2A (Hidden Valley Park pond)	Water Quantity	City	- Increase the downstream pipe capacity in Boone Avenue out of pond BC-P2.2A.
BC-A3	Untreated stormwater runoff discharging to pond BC-P3.15A	Water Quantity	City	- Excavate wet ponding volume in pond BC-P3.15C.
BC-A4	Local flooding at the low point east of Winnetka Avenue on Terra Linda Drive	Water Quantity	City	- Lower and/or widen the existing overland overflow from both Terra Linda Drive and Medicine Lake Road, see the Terra Linda flood study.
BC-A4	Local flooding at the low point at the intersection of Medicine Lake Road and Rhode Island Avenue	Water Quantity	City	- Work with the City of Golden Valley to provide additional downstream trunk pipe capacity in Rhode Island Avenue.