Sweeney Lake aeration study

August 16, 2018 BCWMC meeting

Laura Jester, Administrator BCWMC Greg Wilson, PE, Barr Engineering Co.

outline

project background/historical water quality monitoring and goals

lake ecology, stratification, and aeration configuration

effects of phosphorus and aeration on lake water quality

three-dimensional water quality modeling

discussion of management options

project background 2004: Sweeney Lake designated as impaired water by MPCA

2011: BCWMC completed Sweeney Lake TMDL, including modeling of two years w/o aeration

Sweeney has long history (~40 years) with aeration and water quality goals are not met

Meeting w/MDNR regarding aeration permit application

Aeration study initiated—collect data in 2017 and model potential in-lake management options

lake stratification

epilimnion: warmer, more light

> metalimnion: transitional layer

hypolimnion: cold, dense water, sometimes anoxic

lake stratification

"dimictic" lakes mix twice per year

phosphorus is the key

Excess phosphorus means poor water quality

- Phosphorus feeds algae and causes algal blooms
- Algae decreases water clarity
- Algal decay depletes dissolved oxygen near the lake bottom

Sweeney Lake watershed

where does phosphorus come from?

Internal sources

 Phosphorus can be stored in lake bottom sediments and released when oxygen levels are low

historical water quality and BCWMC/ MPCA goals

total phosphorus ≤ 40 ug/L

> chlorophyll-a ≤14 ug/L

water clarity ≥ 1.4 m (4.6 ft) historical water quality and BCWMC/ MPCA goals

> total phosphorus ≤ 40 ug/L

chlorophyll-a ≤ 14 ug/L

> water clarity ≥ 1.4 m (4.6 ft)

historical water quality and BCWMC/ MPCA goals

> total phosphorus ≤ 40 ug/L

> > chlorophyll-a ≤14 ug/L

→ water clarity \geq 1.4 m (4.6 ft)

results of past studies/data evaluations

Consensus that

- Aeration resulted in complete lake mixing and moderated nutrient levels
- Aeration did not prevent anoxia or internal phosphorus load
- Normal lake stratification resulted in higher phosphorus at bottom, lower phosphorus at the surface of lake (once during drought)
- Insufficient/inconclusive data to differentiate management actions
- Monitor w/o aeration and re-evaluate

lake contours and diffusers

lake stratification/ without aeration

effects of aeration

- 2014 graphic—aeration prevents stratification as temperatures were uniform top-to-bottom
- 2008 graphic—w/o aeration shows thermal layers during the middle of the summer

2014 Model Results with Aeration

2008 Model Results No Aeration

study approach

Steps

- Completed water quality and sediment monitoring
- Compiled/evaluated historical monitoring/aeration system information
- Performed watershed modeling
- Completed three-dimensional lake water quality modeling
- Evaluated possible management actions

3D modeling

Why it's needed, what it does for us

- Aeration causes circulation in three dimensions
 - Each diffuser influences circulation differently
- Each area of lake sediment has unique oxygen demand
- Modeling shows phosphorus, algae and oxygen dynamics
 - Temporally and spatially
 - With and without aeration

3D	model	
SCe	enarios	

Year	Climate Condition	Calibration Scenario	Scenario #1	Scenario #2	Scenario #3
2008	Dry	No aeration	Aeration	No aeration w/alum	Aeration w/alum
2014	Wet	Aeration	No aeration	No aeration w/alum	Aeration w/alum

3D animated model scenarios

Predicted Summer Average Total Phosphorus Concentration (µg/L)

3D model scenarios

3D model scenarios

Predicted Summer Average Total Phosphorus Concentration (µg/L)

3D model scenarios

3D model scenarios

Predicted Summer Average Total Phosphorus Concentration (µg/L)

what is alum?

aluminum sulfate

- Chemical precipitant used in hundreds of lake treatments in the past 45 years
- Safe, non-toxic and non-hazardous
- Forms "floc" that sweeps phosphorus from the water column and locks phosphorus on lake bottom
- Works regardless of oxygen conditions

how long do alum treatments last? Typically maintains water quality improvements for 15 to 20 years

- Aluminum reactivity remains for first couple of years
- Long-term: slow but continual sedimentation adds phosphorus on top of alum floc layer, internal load will slowly return

conclusions

comparing management options

- Internal phosphorus load is the most important source during summer
- Aeration exacerbates summer water quality problems (10-30% increase in total phosphorus in upper layer of lake)
- In-lake alum treatment greatly improves water quality—meets goals
- Aeration after an alum treatment may not provide significant benefits
 - Depends on watershed TP & mixing

recommendations

- Suspend aeration and plan for first phase of alum application
- Monitor lake water quality and biota for two-year period
- Report results and reconsider aeration and/or other management actions

Questions?

Aquatic plants

water quality effects of watershed TP load and aeration

water quality effects of phosphorus and aeration

